Warm-up as you walk in

When does a probability table sum to 1?

\[P(A, B, c) \]

\[P(a \mid B, C) \]

\[P(A, B \mid c) \]

\[P(c \mid A) \]

\[P(a, b \mid c) \]
Announcements

Assignments:
- HW9 (written)
 - Due Tue 4/2, 10 pm

Optional Probability (online)

Midterm:
- Mon 4/8, in-class

Course Feedback:
- See Piazza post for mid-semester survey
AI: Representation and Problem Solving

Bayes Nets

Instructors: Pat Virtue & Stephanie Rosenthal

Slide credits: CMU AI and http://ai.berkeley.edu
Al-pril Fool’s!

Trouble maker credit: Arnav & Pranav
Course Survey

Please fill out on Piazza!
Warm-up as you walk in

When does a probability table sum to 1?

\[
P(A, B, c) \quad P(c | A)
\]

\[
P(A | b) \quad P(a | B, C)
\]

\[
P(A, B | c) \quad P(a, b | c)
\]
What is the probability of getting a slice with:

1) No mushrooms
2) Spinach and no mushrooms
3) Spinach, when asking for slice with no mushrooms
 - Mushrooms
 - Spinach
 - No spinach
 - No spinach and mushrooms
 - No spinach when asking for no mushrooms
 - No spinach when asking for mushrooms
 - Spinach when asking for mushrooms
 - No mushrooms and no spinach

Answer Any Query from Joint Distribution

You can answer all of these questions:

| | \(P(M) \) | \(P(M,S) \) | | \(P(M|s_1) \) | \(P(M|s_2) \) |
|-------|-----------|-------------|-------|---------------|---------------|
| \(m_1 \) | 12/20 | | \(m_1 \) | \(s_1 \) | \(m_1 \) | \(m_2 \) |
| \(m_2 \) | | 6/20 | \(m_2 \) | \(s_1 \) | \(m_2 \) | \(m_2 \) |
| \(s_1 \) | | | \(s_1 \) | | \(s_1 \) | \(s_1 \) |
| \(s_2 \) | | | \(s_2 \) | | \(s_2 \) | \(s_2 \) |

\(P(S|m_1) \):
- \(s_1 \): 6/12
- \(s_2 \): 6/12

\(P(S|m_2) \):
- \(s_1 \): 6/12
- \(s_2 \): 6/12
Answer Any Query from Joint Distribution

P(Weather)?

P(Weather | winter)?

P(Weather | winter, hot)?

<table>
<thead>
<tr>
<th>Season</th>
<th>Temp</th>
<th>Weather</th>
<th>P(S, T, W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>summer</td>
<td>hot</td>
<td>sun</td>
<td>0.30</td>
</tr>
<tr>
<td>summer</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>sun</td>
<td>0.15</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>rain</td>
<td>0.20</td>
</tr>
</tbody>
</table>
Answer Any Query from Joint Distribution

Two tools to go from joint to query

1. Definition of conditional probability

\[P(A|B) = \frac{P(A, B)}{P(B)} \]

2. Law of total probability (marginalization, summing out)

\[P(A) = \sum_b P(A, b) \]

\[P(Y \mid U, V) = \sum_x \sum_z P(x, Y, z \mid U, V) \]
Answer Any Query from Joint Distribution

Two tools to go from joint to query

Joint: \(P(H_1, H_2, Q, E) \)

Query: \(P(Q \mid e) \)

1. Definition of conditional probability

\[
P(Q \mid e) = \frac{P(Q, e)}{P(e)}
\]

2. Law of total probability (marginalization, summing out)

\[
P(Q, e) = \sum_{h_1} \sum_{h_2} P(h_1, h_2, Q, e)
\]

\[
P(e) = \sum_{q} \sum_{h_1} \sum_{h_2} P(h_1, h_2, q, e)
\]
Answer Any Query from Joint Distribution

<table>
<thead>
<tr>
<th>Season</th>
<th>Temp</th>
<th>Weather</th>
<th>P(S, T, W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>summer</td>
<td>hot</td>
<td>sun</td>
<td>0.30</td>
</tr>
<tr>
<td>summer</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>sun</td>
<td>0.15</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>rain</td>
<td>0.20</td>
</tr>
</tbody>
</table>

P(Weather)?

P(Weather | winter)?

P(Weather | winter, hot)?
Answer Any Query from Joint Distribution

Joint distributions are the best!

Problems with joints

- Huge
 - \(n \) variables with \(d \) values
 - \(d^n \) entries
- We aren’t given the joint table
 - Usually some set of conditional probability tables

\(P(a \mid e) \)
Build Joint Distribution Using Chain Rule

Conditional Probability Tables and Chain Rule

Joint Query

\[P(a \mid e) \]

\[P(A) \ P(B \mid A) \ P(C \mid A, B) \ P(D \mid A, B, C) \ P(E \mid A, B, C, D) \]
Build Joint Distribution Using Chain Rule

Two tools to construct joint distribution

1. Product rule

\[P(A, B) = P(A | B)P(B) \]
\[P(A, B) = P(B | A)P(A) \]

2. Chain rule

\[P(X_1, X_2, ..., X_n) = \prod_{i} P(X_i | X_1, ..., X_{i-1}) \]

\[P(A, B, C) = P(A)P(B | A)P(C | A, B) \quad \text{for ordering A, B, C} \]
\[P(A, B, C) = P(A)P(C | A)P(B | A, C) \quad \text{for ordering A, C, B} \]
\[P(A, B, C) = P(C)P(B | C)P(A | C, B) \quad \text{for ordering C, B, A} \]
Answer Any Query from Condition Probability Tables

Conditional Probability Tables and Chain Rule

Joint

Query

\[P(a \mid e) \]

\[P(A) \ P(B \mid A) \ P(C \mid A, B) \ P(D \mid A, B, C) \ P(E \mid A, B, C, D) \]
Answer Any Query from Condition Probability Tables

Process to go from (specific) conditional probability tables to query

1. Construct the joint distribution
 1. Product Rule or Chain Rule
2. Answer query from joint
 1. Definition of conditional probability
 2. Law of total probability (marginalization, summing out)
Answer Any Query from Condition Probability Tables

Bayes’ rule as an example

Given: $P(E|Q), P(Q)$
Query: $P(Q \mid e)$

1. Construct the joint distribution
 1. Product Rule or Chain Rule

 $$P(E, Q) = P(E \mid Q)P(Q)$$

2. Answer query from joint
 1. Definition of conditional probability

 $$P(Q \mid e) = \frac{P(e, Q)}{P(e)}$$
 2. Law of total probability (marginalization, summing out)

 $$P(Q \mid e) = \frac{P(e, Q)}{\sum_q P(e, q)}$$
Answer Any Query from Condition Probability Tables

Conditional Probability Tables and Chain Rule

\[P(A) \quad P(B|A) \quad P(C|A, B) \quad P(D|A, B, C) \quad P(E|A, B, C, D) \]

Joint

Query

\[P(a | e) \]
Answer Any Query from Condition Probability Tables

Conditional Probability Tables and Chain Rule

\[P(A) \ P(B|A) \ P(C|A,B) \ P(D|A,B,C) \ P(E|A,B,C,D) \]

Problems
- Huge
 - \(n \) variables with \(d \) values
 - \(d^n \) entries
- We aren’t given the right tables
Answer Any Query from Condition Probability Tables

Conditional Probability Tables and Chain Rule

Joint Query

\[P(A) \ P(B|A) \ P(C|A,B) \ P(D|A,B,C) \ P(E|A,B,C,D) \]

\[P(a \mid e) \]
Answer Any Query from Condition Probability Tables

Bayes Net

Joint

Query

$P(a | e)$

$P(A) P(B|A) P(C|A) P(D|C) P(E|C)$
Answer Any Query from Condition Probability Tables

Bayes Net

Query

\(P(a \mid e) \)

\(P(A) \) \(P(B \mid A) \) \(P(C \mid A) \) \(P(D \mid C) \) \(P(E \mid C) \)
Build Joint Distribution Using Chain Rule

Chain rule

\[P(X_1, X_2, \ldots, X_n) = \prod_i P(X_i \mid X_1, \ldots, X_{i-1}) \]
Independence
Independence

Two variables X and Y are (absolutely) independent if

\[\forall x, y \quad P(x, y) = P(x) P(y) \]

- This says that their joint distribution factors into a product of two simpler distributions
- Combine with product rule \(P(x,y) = P(x|y)P(y) \) we obtain another form:

\[\forall x,y \quad P(x \mid y) = P(x) \quad \text{or} \quad \forall x,y \quad P(y \mid x) = P(y) \]

Example: two dice rolls \(Roll_1 \) and \(Roll_2 \)
- \(P(Roll_1=5, Roll_2=5) = P(Roll_1=5) P(Roll_2=5) = 1/6 \times 1/6 = 1/36 \)
- \(P(Roll_2=5 \mid Roll_1=5) = P(Roll_2=5) \)
Example: Independence

n fair, independent coin flips:

\[
P(X_1) \quad P(X_2) \quad \ldots \quad P(X_n)
\]

\[
\begin{array}{cc}
H & 0.5 \\
T & 0.5 \\
\end{array}
\quad
\begin{array}{cc}
H & 0.5 \\
T & 0.5 \\
\end{array}
\quad \ldots
\quad
\begin{array}{cc}
H & 0.5 \\
T & 0.5 \\
\end{array}
\]

\[
P(X_1, X_2, \ldots, X_n) = 2^n
\]
Example: Independence?

\[P(T) \]

<table>
<thead>
<tr>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>0.5</td>
</tr>
<tr>
<td>cold</td>
<td>0.5</td>
</tr>
</tbody>
</table>

\[P_1(T, W) \]

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

\[P(W) \]

<table>
<thead>
<tr>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.6</td>
</tr>
<tr>
<td>rain</td>
<td>0.4</td>
</tr>
</tbody>
</table>

\[P_2(T, W) = P(T)P(W) \]

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.3</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.3</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Conditional Independence

\[P(\text{Toothache}, \text{Cavity}, \text{Catch}) \]

If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
- \[P(+\text{catch} \mid +\text{toothache}, +\text{cavity}) = P(+\text{catch} \mid +\text{cavity}) \]

The same independence holds if I don't have a cavity:
- \[P(+\text{catch} \mid +\text{toothache}, -\text{cavity}) = P(+\text{catch} \mid -\text{cavity}) \]

Catch is *conditionally independent* of Toothache given Cavity:
- \[P(\text{Catch} \mid \text{Toothache}, \text{Cavity}) = P(\text{Catch} \mid \text{Cavity}) \]

Equivalent statements:
- \[P(\text{Toothache} \mid \text{Catch}, \text{Cavity}) = P(\text{Toothache} \mid \text{Cavity}) \]
- \[P(\text{Toothache}, \text{Catch} \mid \text{Cavity}) = P(\text{Toothache} \mid \text{Cavity}) P(\text{Catch} \mid \text{Cavity}) \]
- One can be derived from the other easily
Conditional Independence

Unconditional (absolute) independence very rare (why?)

Conditional independence is our most basic and robust form of knowledge about uncertain environments.

X is conditionally independent of Y given Z

if and only if:

\[\forall x, y, z \quad P(x \mid y, z) = P(x \mid z) \]

or, equivalently, if and only if

\[\forall x, y, z \quad P(x, y \mid z) = P(x \mid z) P(y \mid z) \]
Conditional Independence

What about this domain:

- Fire
- Smoke
- Alarm
Conditional Independence

What about this domain:

- Traffic
- Umbrella
- Raining
Conditional Independence and the Chain Rule

Chain rule:
\[P(x_1, x_2, \ldots, x_n) = \prod_i P(x_i \mid x_1, \ldots, x_{i-1}) \]

Trivial decomposition:
\[P(\text{Rain, Traffic, Umbrella}) = \]

With assumption of conditional independence:
\[P(\text{Rain, Traffic, Umbrella}) = \]
Conditional Independence and the Chain Rule

Chain rule:

\[P(x_1, x_2, \ldots, x_n) = \prod_i P(x_i \mid x_1, \ldots, x_{i-1}) \]

Trivial decomposition:

\[P(Rain, Traffic, Umbrella) = P(Rain) \ P(Traffic \mid Rain) \ P(Umbrella \mid Rain, Traffic) \]

With assumption of conditional independence:

\[P(Rain, Traffic, Umbrella) = P(Rain) \ P(Traffic \mid Rain) \ P(Umbrella \mid Rain) \]

Bayes nets / graphical models help us express conditional independence assumptions
Bayes’Nets: Big Picture

Encoding Complex Distributions

In 12 Easy Steps!
Bayes’ Nets: Big Picture

Two problems with using full joint distribution tables as our probabilistic models:

- Unless there are only a few variables, the joint is WAY too big to represent explicitly
- Hard to learn (estimate) anything empirically about more than a few variables at a time

Bayes’ nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)

- More properly called graphical models
- We describe how variables locally interact
- Local interactions chain together to give global, indirect interactions
Example Bayes’ Net: Insurance
Graphical Model Notation

Nodes: variables (with domains)
- Can be assigned (observed) or unassigned (unobserved)

Arcs: interactions
- Similar to CSP constraints
- Indicate “direct influence” between variables
- Formally: encode conditional independence (more later)

For now: imagine that arrows mean direct causation (in general, they don’t!)
Example: Coin Flips

N independent coin flips

\[X_1 \quad X_2 \quad \ldots \quad X_n \]

No interactions between variables: absolute independence
Example: Traffic

Variables:
- R: It rains
- T: There is traffic

Model 1: independence

- Model 2: rain causes traffic

Why is an agent using model 2 better?
Example: Traffic II

Let’s build a causal graphical model!

Variables
- T: Traffic
- R: It rains
- L: Low pressure
- D: Roof drips
- B: Ballgame
- C: Cavity
Example: Alarm Network

Variables
- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!
Bayes’ Net Semantics
Bayes Nets Syntax Review

One node per random variable

DAG

One CPT per node: $P(\text{node} \mid \text{Parents}(\text{node}) \)$

Bayes net
Bayes Net Global Semantics

Bayes nets:
- Encode joint distributions as product of conditional distributions on each variable

\[P(X_1 \ldots X_2) = \prod_{i} P(X_i | Parents(X_i)) \]
Semantics Example

Joint distribution factorization example

Generic chain rule

\[P(X_1 \ldots X_2) = \prod_i P(X_i | X_1 \ldots X_{i-1}) \]

\[
P(B, E, A, J, M) = P(B) P(E|B) P(A|B, E) P(J|B, E, A) P(M|B, E, A, J)
\]

\[
P(B, E, A, J, M) = P(B) P(E) P(A|B, E) P(J|A) P(M|A)
\]

Bayes nets

\[P(X_1 \ldots X_2) = \prod_i P(X_i | Parents(X_i)) \]
Example: Coin Flips

Only distributions whose variables are absolutely independent can be represented by a Bayes’ net with no arcs.
Example: Traffic

\[P(R) \]

<table>
<thead>
<tr>
<th></th>
<th>+r</th>
<th>-r</th>
</tr>
</thead>
<tbody>
<tr>
<td>+r</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>-r</td>
<td>3/4</td>
<td></td>
</tr>
</tbody>
</table>

\[P(T|R) \]

<table>
<thead>
<tr>
<th></th>
<th>+t</th>
<th>-t</th>
</tr>
</thead>
<tbody>
<tr>
<td>+r</td>
<td>3/4</td>
<td>1/4</td>
</tr>
<tr>
<td>-t</td>
<td>1/2</td>
<td>1/2</td>
</tr>
</tbody>
</table>

\[P(+r, -t) = \]
Example: Alarm Network

Example Table:

<table>
<thead>
<tr>
<th>B</th>
<th>P(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+b</td>
<td>0.001</td>
</tr>
<tr>
<td>-b</td>
<td>0.999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>P(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+e</td>
<td>0.002</td>
</tr>
<tr>
<td>-e</td>
<td>0.998</td>
</tr>
</tbody>
</table>

| A | J | P(J|A) |
|----|----|------|
| +a | +j | 0.9 |
| +a | -j | 0.1 |
| -a | +j | 0.05 |
| -a | -j | 0.95 |

| A | M | P(M|A) |
|----|----|------|
| +a | +m | 0.7 |
| +a | -m | 0.3 |
| -a | +m | 0.01 |
| -a | -m | 0.99 |

Conditional Probability Table:

| B | E | A | P(A|B,E) |
|----|----|----|---------|
| +b | +e | +a | 0.95 |
| +b | +e | -a | 0.05 |
| +b | -e | +a | 0.94 |
| +b | -e | -a | 0.06 |
| -b | +e | +a | 0.29 |
| -b | +e | -a | 0.71 |
| -b | -e | +a | 0.001 |
| -b | -e | -a | 0.999 |