Warm-up as you walk in

https://high-level-4.herokuapp.com/experiment

https://rach0012.github.io/humanRL_website/
Announcements

Assignments:

- HW8
 - Due Tue 3/26, 10 pm
- P4
 - Due Thu 3/28, 10 pm
- HW9 (written)
 - Plan: Out tomorrow, due Tue 4/2
Reinforcement Learning

We still assume an MDP:

- A set of states $s \in S$
- A set of actions (per state) A
- A model $T(s,a,s')$
- A reward function $R(s,a,s')$

Still looking for a policy $\pi(s)$

New twist: don’t know T or R, so must try out actions

Big idea: Compute all averages over T using sample outcomes
Temporal Difference Learning
Model-Free Learning

Model-free (temporal difference) learning
- Experience world through episodes
 $$(s, a, r, s', a', r', s'', a'', r'', s'''' \ldots)$$
- Update estimates each transition
 $$(s, a, r, s')$$
- Over time, updates will mimic Bellman updates
Temporal Difference Learning

Big idea: learn from every experience!
- Update $V(s)$ each time we experience a transition (s, a, s', r)
- Likely outcomes s' will contribute updates more often

Temporal difference learning of values
- Policy still fixed, still doing evaluation!
- Move values toward value of whatever successor occurs: running average

Sample of $V(s)$:
$$sample = r + \gamma V^\pi(s')$$

Update to $V(s)$:
$$V^\pi(s) \leftarrow (1 - \alpha) V^\pi(s) + (\alpha) sample$$

Same update:
$$V^\pi(s) \leftarrow V^\pi(s) + \alpha [sample - V^\pi(s)]$$

Same update:
$$V^\pi(s) \leftarrow V^\pi(s) - \alpha \nabla Error \quad Error = \frac{1}{2} (sample - V^\pi(s))^2$$
Gradient Descent
TD update:
\[V^\pi(s) = V^\pi(s) + \alpha [r + \gamma V^\pi(s') - V^\pi(s)] \]

Which converts TD values into a policy?

Value iteration:
\[V_{k+1}(s) = \max_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_k(s')] \]

Q-iteration:
\[Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \max_a Q_k(s',a')] \]

Policy extraction:
\[\pi_V(s) = \arg \max_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V(s')] \]

Policy evaluation:
\[V_{k+1}^\pi(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^\pi(s')] \]

Policy improvement:
\[\pi_{new}(s) = \arg \max_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_{\pi_{old}}(s')] \]
MDP/RL Notation

Standard expectimax:
\[V(s) = \max_a \sum_{s'} P(s'|s,a)V(s') \]

Bellman equations:
\[V(s) = \max_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V(s')] \]

Value iteration:
\[V_{k+1}(s) = \max_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_k(s')], \quad \forall s \]

Q-iteration:
\[Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \max_{a'} Q_k(s', a')], \quad \forall s, a \]

Policy extraction:
\[\pi_V(s) = \arg\max_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V(s')] , \quad \forall s \]

Policy evaluation:
\[V_{k+1}^\pi(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^\pi(s')], \quad \forall s \]

Policy improvement:
\[\pi_{\text{new}}(s) = \arg\max_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_{\pi_{\text{old}}}(s')], \quad \forall s \]

Value (TD) learning:
\[V^\pi(s) = V^\pi(s) + \alpha [r + \gamma V^\pi(s') - V^\pi(s)] \]

Q-learning:
\[Q(s,a) = Q(s,a) + \alpha [r + \gamma \max_{a'} Q(s',a') - Q(s,a)] \]
Q-Learning

We’d like to do Q-value updates to each Q-state:

\[Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right] \]

- But can’t compute this update without knowing \(T, R \)

Instead, compute average as we go

- Receive a sample transition \((s, a, r, s')\)
- This sample suggests

\[Q(s, a) \approx r + \gamma \max_{a'} Q(s', a') \]

- But we want to average over results from \((s, a)\) (Why?)
- So keep a running average

\[Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) \left[r + \gamma \max_{a'} Q(s', a') \right] \]
Q-Learning Properties

Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!

This is called off-policy learning

Caveats:
- You have to explore enough
- You have to eventually make the learning rate small enough
- ... but not decrease it too quickly
- Basically, in the limit, it doesn’t matter how you select actions (!)

[Demo: Q-learning – auto – cliff grid (L11D1)]
Demo Q-Learning Auto Cliff Grid
The Story So Far: MDPs and RL

Known MDP: Offline Solution

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute $V^$, $Q^$, π^*</td>
<td>Value / policy iteration</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
<td>Policy evaluation</td>
</tr>
</tbody>
</table>

Unknown MDP: Model-Based

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute $V^$, $Q^$, π^*</td>
<td>VI/PI on approx. MDP</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
<td>PE on approx. MDP</td>
</tr>
</tbody>
</table>

Unknown MDP: Model-Free

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute $V^$, $Q^$, π^*</td>
<td>Q-learning</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
<td>TD/Value Learning</td>
</tr>
</tbody>
</table>
Exploration vs. Exploitation
How to Explore?

Several schemes for forcing exploration
- Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ε, act randomly
 - With (large) probability 1-ε, act on current policy
- Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)]
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]
Demo Q-learning – Manual Exploration – Bridge Grid
Demo Q-learning – Epsilon-Greedy – Crawler
Exploration Functions

When to explore?
- Random actions: explore a fixed amount
- Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

Exploration function
- Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g.

$$f(u, n) = u + k/n$$

- Regular Q-Update: $Q(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} Q(s', a')$
- Modified Q-Update: $Q(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} f(Q(s', a'), N(s', a'))$

- Note: this propagates the “bonus” back to states that lead to unknown states as well!

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]
Demo Q-learning – Exploration Function – Crawler
Even if you learn the optimal policy, you still make mistakes along the way!

Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards

Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal

Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret
Approximate Q-Learning
Generalizing Across States

Basic Q-Learning keeps a table of all q-values

In realistic situations, we cannot possibly learn about every single state!
- Too many states to visit them all in training
- Too many states to hold the q-tables in memory

Instead, we want to generalize:
- Learn about some small number of training states from experience
- Generalize that experience to new, similar situations
- This is a fundamental idea in machine learning, and we’ll see it over and over again
Example: Pacman

Let’s say we discover through experience that this state is bad:

In naïve q-learning, we know nothing about this state:

Or even this one!

[Demo: Q-learning – pacman – tiny – watch all (L11D5)]
[Demo: Q-learning – pacman – tiny – silent train (L11D6)]
[Demo: Q-learning – pacman – tricky – watch all (L11D7)]
Demo Q-Learning Pacman – Tiny – Watch All
Demo Q-Learning Pacman – Tiny – Silent Train
Demo Q-Learning Pacman – Tricky – Watch All
Feature-Based Representations

Solution: describe a state using a vector of features (properties)
- Features are functions from states to real numbers (often 0/1) that capture important properties of the state
- Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - $1 / (\text{dist to dot})^2$
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
- Can also describe a q-state (s, a) with features (e.g. action moves closer to food)
Linear Value Functions

Using a feature representation, we can write a q function (or value function) for any state using a few weights:

- \(V_w(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \)

- \(Q_w(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a) \)

Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in value!
Updating a linear value function

Original Q learning rule tries to reduce prediction error at \(s, a\):

\[
Q(s,a) \leftarrow Q(s,a) + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q(s',a') - Q(s,a)]
\]

Instead, we update the weights to try to reduce the error at \(s, a\):

\[
w_i \leftarrow w_i + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q(s',a') - Q(s,a)] \frac{\partial Q_w(s,a)}{\partial w_i}
= w_i + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q(s',a') - Q(s,a)] f_i(s,a)
\]

Qualitative justification:
- **Pleasant surprise:** increase weights on +ve features, decrease on –ve ones
- **Unpleasant surprise:** decrease weights on +ve features, increase on –ve ones
Approximate Q-Learning

\[
Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a)
\]

Q-learning with linear Q-functions:

- Transition: \((s, a, r, s') \)
- Difference: \(r + \gamma \max_{a'} Q(s', a') \) - \(Q(s, a) \)
- Update: \(Q(s, a) \leftarrow Q(s, a) + \alpha [\text{difference}] \)

Intuitive interpretation:
- Adjust weights of active features
- E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state’s features

Formal justification: online least squares
Example: Q-Pacman

\[Q(s, a) = 4.0 f_{DOT}(s, a) - 1.0 f_{GST}(s, a) \]

\[f_{DOT}(s, \text{NORTH}) = 0.5 \]
\[f_{GST}(s, \text{NORTH}) = 1.0 \]

\[Q(s, \text{NORTH}) = +1 \]
\[r + \gamma \max_{a'} Q(s', a') = -500 + 0 \]

difference = \(-501\)

\[w_{DOT} \leftarrow 4.0 + \alpha [-501] 0.5 \]
\[w_{GST} \leftarrow -1.0 + \alpha [-501] 1.0 \]

\[Q(s, a) = 3.0 f_{DOT}(s, a) - 3.0 f_{GST}(s, a) \]
Demo Approximate Q-Learning -- Pacman
Q-Learning and Least Squares
Linear Approximation: Regression

Prediction:
\[\hat{y} = w_0 + w_1 f_1(x) \]

Prediction:
\[\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x) \]
Optimization: Least Squares

\[
\text{total error} = \sum_i (y_i - \hat{y}_i)^2 = \sum_i \left(y_i - \sum_k w_k f_k(x_i)\right)^2
\]
Minimizing Error

Imagine we had only one point \(x \), with features \(f(x) \), target value \(y \), and weights \(w \):

\[
\text{error}(w) = \frac{1}{2} \left(y - \sum_k w_k f_k(x) \right)^2
\]
\[
\frac{\partial \text{error}(w)}{\partial w_m} = - \left(y - \sum_k w_k f_k(x) \right) f_m(x)
\]
\[
w_m \leftarrow w_m + \alpha \left(y - \sum_k w_k f_k(x) \right) f_m(x)
\]

Approximate q update explained:

\[
w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)
\]

“target”

“prediction”
Recent Reinforcement Learning Milestones
TDGammon

1992 by Gerald Tesauro, IBM
4-ply lookahead using $V(s)$ trained from 1,500,000 games of self-play
3 hidden layers, ~100 units each
Input: contents of each location plus several handcrafted features
Experimental results:
- Plays approximately at parity with world champion
- Led to radical changes in the way humans play backgammon
Deep Q-Networks

Deep Mind, 2015

Used a deep learning network to represent Q:
- Input is last 4 images (84x84 pixel values) plus score

49 Atari games, incl. Breakout, Space Invaders, Seaquest, Enduro
OpenAI Gym

2016+
Benchmark problems for learning agents
https://gym.openai.com/envs

- Acrobot-v1
 Swing up a two-link robot.

- Ant-v2
 Make a 3D four-legged robot walk.

- MountainCarContinuous-v0
 Drive up a hill with continuous control.

- Humanoid-v2
 Make a 3D two-legged robot walk.

- Fetch-v0
 Push a block to a goal position.

- FetchPush-v0
 Push a block to a goal position.

- Hand-v0
 Orient a block using a robot hand.

- HandManipulateBlock-v0
 Orient a block using a robot hand.

- Breakout-v0
 Maximize score in the game Breakout, with RAM as input.

- Breakout-ram-v0
 Maximize score in the game Breakout, with RAM as input.

- Carnival-v0
 Maximize score in the game Carnival, with screen images as input.
AlphaGo, AlphaZero

Deep Mind, 2016+
Autonomous Vehicles?