Warm-up as You Walk In (Repeat)

Given
- Set actions (persistent/static)
- Set states (persistent/static)
- Function $T(s, a, s')$

Write the pseudo code for:
- function $V(s)$ return value

that implements:

$$V(s) = \max_{a \in \text{actions}} \sum_{s' \in \text{states}} T(s, a, s')V(s')$$
Announcements

Assignments:

- HW7
 - Due Wed 3/20, 10 pm
- HW8
 - Plan: Out tomorrow, due M 3/25
- P4
 - Plan: Out tomorrow, due Thu 3/28
AI: Representation and Problem Solving

Markov Decision Processes II

Instructors: Pat Virtue & Stephanie Rosenthal

Slide credits: CMU AI and http://ai.berkeley.edu
Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent’s path

- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put

- The agent receives rewards each time step
 - Small “living” reward each step (can be negative)
 - Big rewards come at the end (good or bad)
Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent’s path

- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put

- The agent receives rewards each time step
 - Small “living” reward each step (can be negative)
 - Big rewards come at the end (good or bad)

- Goal: maximize sum of (discounted) rewards
Recap: MDPs

Markov decision processes:
- States S
- Actions A
- Transitions $P(s' | s, a)$ (or $T(s, a, s')$)
- Rewards $R(s, a, s')$ (and discount γ)
- Start state s_0

Quantities:
- Policy = map of states to actions
- Utility = sum of discounted rewards
- Values = expected future utility from a state (max node)
- Q-Values = expected future utility from a q-state (chance node)
MDP Notation

Standard expectimax:
\[V(s) = \max_a \sum_{s'} P(s'|s,a)V(s') \]

Bellman equations:
\[V(s) = \max_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V(s')] \]

Value iteration:
\[V_{k+1}(s) = \max_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_k(s')], \quad \forall s \]

Q-iteration:
\[Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s, a \]

Policy extraction:
\[\pi_V(s) = \arg\max_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V(s')] \], \quad \forall s \]

Policy evaluation:
\[V_{k+1}^\pi(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^\pi(s')], \quad \forall s \]

Policy improvement:
\[\pi_{\text{new}}(s) = \arg\max_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_{\pi\text{old}}(s')], \quad \forall s \]
Optimal Quantities

- The value (utility) of a state s: $V^*(s) = \text{expected utility starting in } s \text{ and acting optimally}$

- The value (utility) of a q-state (s,a): $Q^*(s,a) = \text{expected utility starting out having taken action } a \text{ from state } s \text{ and (thereafter) acting optimally}$

- The optimal policy: $\pi^*(s) = \text{optimal action from state } s$
Gridworld Values V^*

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.64</td>
<td>0.74</td>
<td>0.85</td>
<td>1.00</td>
</tr>
<tr>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>0.57</td>
<td>0.57</td>
<td>-1.00</td>
<td></td>
</tr>
<tr>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>0.49</td>
<td>0.43</td>
<td>0.48</td>
<td>0.28</td>
</tr>
</tbody>
</table>

VALUES AFTER 100 ITERATIONS
Gridworld: Q^*

Q-VALUES AFTER 100 ITERATIONS
The Bellman Equations

How to be optimal:

Step 1: Take correct first action
Step 2: Keep being optimal
The Bellman Equations

Definition of “optimal utility” via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

\[V^*(s) = \max_a Q^*(s, a) \]

\[Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

\[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

These are the Bellman equations, and they characterize optimal values in a way we’ll use over and over
Solving MDPs
Solving Expectimax
Solving Expectimax
Solving Expectimax

\[\gamma^2 \]
Value Iteration
Demo Value Iteration

VALUES AFTER 0 ITERATIONS

VALUES AFTER 100 ITERATIONS

[Demo: value iteration (L8D6)]
Value Iteration

Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero

Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Repeat until convergence

Complexity of each iteration: $O(S^2A)$

Theorem: will converge to unique optimal values

- **Basic idea:** approximations get refined towards optimal values
- **Policy** may converge long before values do
Value Iteration

Bellman equations characterize the optimal values:

$$V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Value iteration is just a fixed point solution method

- though the V_k vectors are also interpretable as time-limited values
Value Iteration Convergence

How do we know the V_k vectors are going to converge?

Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values.

Case 2: If the discount is less than 1

- Sketch: For any state V_k and V_{k+1} can be viewed as depth $k+1$ expectimax results in nearly identical search trees.
- The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros.
- That last layer is at best all R_{MAX}.
- It is at worst R_{MIN}.
- But everything is discounted by γ^k that far out.
- So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different.
- So as k increases, the values converge.
Solved MDP! Now what?

What are we going to do with these values??

\[V^*(s) \]

\[Q^*(s, a) \]
Piazza Poll 1

If you need to extract a policy, would you rather have Values or Q-values?
Piazza Poll 1

If you need to extract a policy, would you rather have Values or Q-values?
Policy Methods
Policy Evaluation
Fixed Policies

Expectimax trees max over all actions to compute the optimal values

If we fixed some policy $\pi(s)$, then the tree would be simpler – only one action per state

- ... though the tree’s value would depend on which policy we fixed
Utilities for a Fixed Policy

Another basic operation: compute the utility of a state \(s \) under a fixed (generally non-optimal) policy

Define the utility of a state \(s \), under a fixed policy \(\pi \):

\[
V^\pi(s) = \text{expected total discounted rewards starting in } s \text{ and following } \pi
\]

Recursive relation (one-step look-ahead / Bellman equation):

\[
V^\pi(s) = \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V^\pi(s')]
\]
Example: Policy Evaluation

Always Go Right

Always Go Forward
Example: Policy Evaluation

Always Go Right

Always Go Forward
Policy Evaluation

How do we calculate the V’s for a fixed policy π?

Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^\pi(s) = 0$$

$$V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^\pi(s')]$$

Efficiency: $O(S^2)$ per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
- Solve with your favorite linear system solver
Policy Extraction
Computing Actions from Values

Let’s imagine we have the optimal values $V^*(s)$

How should we act?
- It’s not obvious!

We need to do a mini-expectimax (one step)

$$
\pi^*(s) = \arg \max_a \sum_{s'} T(s, a, s')[R(s, a, s') + \gamma V^*(s')]
$$

This is called policy extraction, since it gets the policy implied by the values.
Computing Actions from Q-Values

Let’s imagine we have the optimal q-values:

How should we act?

▪ Completely trivial to decide!

\[\pi^*(s) = \underset{a}{\arg \max} Q^*(s, a) \]

Important lesson: actions are easier to select from q-values than values!
Policy Iteration
Problems with Value Iteration

Value iteration repeats the Bellman updates:

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

Problem 1: It’s slow – \(O(S^2A) \) per iteration

Problem 2: The “max” at each state rarely changes

Problem 3: The policy often converges long before the values
k=0

VALUES AFTER 0 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

$\uparrow(s) \rightarrow a$
k=1

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=2

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=3

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k = 4$

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=6

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=7

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k = 8$

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=9

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
<table>
<thead>
<tr>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.64</td>
<td>0.74</td>
<td>0.85</td>
<td>1.00</td>
</tr>
<tr>
<td>0.56</td>
<td>0.57</td>
<td>-1.00</td>
<td></td>
</tr>
<tr>
<td>0.48</td>
<td>0.41</td>
<td>0.47</td>
<td>0.27</td>
</tr>
</tbody>
</table>

VALUES AFTER 10 ITERATIONS

- **k=10**
- **Noise = 0.2**
- **Discount = 0.9**
- **Living reward = 0**
k=11

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=12

Values after 12 iterations:

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=100$

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Policy Iteration

Alternative approach for optimal values:

- **Step 1:** **Policy evaluation**: calculate utilities for some fixed policy (not optimal utilities!) until convergence
- **Step 2:** **Policy improvement**: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges

This is policy iteration

- It’s still optimal!
- Can converge (much) faster under some conditions
Policy Iteration

Evaluation: For fixed current policy π, find values with policy evaluation:
- Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

Improvement: For fixed values, get a better policy using policy extraction
- One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$
Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:

- Every iteration updates both the values and (implicitly) the policy
- We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

- We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
- After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
- The new policy will be better (or we’re done)

(Both are dynamic programs for solving MDPs)
Summary: MDP Algorithms

So you want to....
▪ Compute optimal values: use value iteration or policy iteration
▪ Compute values for a particular policy: use policy evaluation
▪ Turn your values into a policy: use policy extraction (one-step lookahead)

These all look the same!
▪ They basically are – they are all variations of Bellman updates
▪ They all use one-step lookahead expectimax fragments
▪ They differ only in whether we plug in a fixed policy or max over actions
MDP Notation

Standard expectimax: \[
V(s) = \max_a \sum_{s'} P(s'|s, a)V(s')
\]

Bellman equations: \[
V(s) = \max_a \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V(s')]
\]

Value iteration: \[
V_{k+1}(s) = \max_a \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V_k(s')], \quad \forall s
\]

Q-iteration: \[
Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \quad \forall s, a
\]

Policy extraction: \[
\pi_V(s) = \arg\max_a \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V(s')], \quad \forall s
\]

Policy evaluation: \[
V^\pi_{k+1}(s) = \sum_{s'} P(s'|s, \pi(s))[R(s, \pi(s), s') + \gamma V^\pi_k(s')], \quad \forall s
\]

Policy improvement: \[
\pi_{new}(s) = \arg\max_a \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V^\pi_{old}(s')], \quad \forall s
\]
MDP Notation

Standard expectimax:

\[V(s) = \max_a \sum_{s'} P(s'|s, a)V(s') \]

Bellman equations:

\[V(s) = \max_a \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V(s')] \]

Value iteration:

\[V_{k+1}(s) = \max_a \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V_k(s')], \quad \forall s \]

Q-iteration:

\[Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \quad \forall s, a \]

Policy extraction:

\[\pi_V(s) = \arg\max_a \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V(s')], \quad \forall s \]

Policy evaluation:

\[V^\pi_{k+1}(s) = \sum_{s'} P(s'|s, \pi(s))[R(s, \pi(s), s') + \gamma V^\pi_k(s')], \quad \forall s \]

Policy improvement:

\[\pi_{new}(s) = \arg\max_a \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V^\pi_{old}(s')], \quad \forall s \]
MDP Notation

Standard expectimax: \[V(s) = \max_a \sum_{s'} P(s'|s, a)V(s') \]

Bellman equations: \[V(s) = \max_a \sum_{s'} P(s'|s, a)[R(s,a,s') + \gamma V(s')] \]

Value iteration: \[V_{k+1}(s) = \max_a \sum_{s'} P(s'|s, a)[R(s,a,s') + \gamma V_k(s')] \quad \forall s \]

Q-iteration: \[Q_{k+1}(s,a) = \sum_{s'} P(s'|s, a)[R(s,a,s') + \gamma \max_{a'} Q_k(s', a')] \quad \forall s,a \]

Policy extraction: \[\pi_V(s) = \arg\max_a \sum_{s'} P(s'|s, a)[R(s,a,s') + \gamma V(s')] \quad \forall s \]

Policy evaluation: \[V^\pi_{k+1}(s) = \sum_{s'} P(s'|s, \pi(s))[R(s,\pi(s),s') + \gamma V^\pi_k(s')] \quad \forall s \]

Policy improvement: \[\pi_{new}(s) = \arg\max_a \sum_{s'} P(s'|s, a)[R(s,a,s') + \gamma V^{\pi_{old}}(s')] \quad \forall s \]
MDP Notation

Standard expectimax: \[V(s) = \max_a \sum_{s'} P(s'|s, a)V(s') \]

Bellman equations: \[V(s) = \max_a \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V(s')] \]

Value iteration: \[V_{k+1}(s) = \max_a \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V_k(s')] , \quad \forall s \]

Q-iteration: \[Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma \max_{a'} Q_k(s', a')] , \quad \forall s, a \]

Policy extraction: \[\pi_V(s) = \arg\max_a \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V(s')] , \quad \forall s \]

Policy evaluation: \[V_{k+1}^\pi(s) = \sum_{s'} P(s'|s, \pi(s))[R(s, \pi(s), s') + \gamma V_k^\pi(s')] , \quad \forall s \]

Policy improvement: \[\pi_{\text{new}}(s) = \arg\max_a \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V_{\pi_{\text{old}}}(s')] , \quad \forall s \]
Double Bandits
Double-Bandit MDP

Actions: Blue, Red
States: Win, Lose

No discount
100 time steps
Both states have the same value
Offline Planning

Solving MDPs is offline planning
- You determine all quantities through computation
- You need to know the details of the MDP
- You do not actually play the game!

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Play Red</td>
<td>150</td>
</tr>
<tr>
<td>Play Blue</td>
<td>100</td>
</tr>
</tbody>
</table>

No discount
100 time steps
Both states have the same value
Let’s Play!
Online Planning

Rules changed! Red’s win chance is different.
Let’s Play!
What Just Happened?

That wasn’t planning, it was learning!
- Specifically, reinforcement learning
- There was an MDP, but you couldn’t solve it with just computation
- You needed to actually act to figure it out

Important ideas in reinforcement learning that came up
- **Exploration**: you have to try unknown actions to get information
- **Exploitation**: eventually, you have to use what you know
- **Regret**: even if you learn intelligently, you make mistakes
- **Sampling**: because of chance, you have to try things repeatedly
- **Difficulty**: learning can be much harder than solving a known MDP
Next Time: Reinforcement Learning!