Warm-up as You Walk In

Given

- Set actions (persistent/static)
- Set states (persistent/static)
- Function $T(s, a, s')$

Write the pseudo code for:

- function $V(s)$ return value

that implements:

$$V(s) = \max_{a \in \text{actions}} \sum_{s' \in \text{states}} T(s, a, s')V(s')$$
Announcements

Assignments:

- HW7
 - Due Wed 3/20, 10 pm
- HW8
 - Plan: Out tomorrow, due M 3/25
- P4
 - Plan: Out tomorrow, due Thu 3/28
Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent’s path

- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put

- The agent receives rewards each time step
 - Small “living” reward each step (can be negative)
 - Big rewards come at the end (good or bad)
Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent’s path

- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put

- The agent receives rewards each time step
 - Small “living” reward each step (can be negative)
 - Big rewards come at the end (good or bad)

- Goal: maximize sum of (discounted) rewards
Recap: MDPs

Markov decision processes:
- States S
- Actions A
- Transitions $P(s'|s,a)$ (or $T(s,a,s')$)
- Rewards $R(s,a,s')$ (and discount γ)
- Start state s_0

Quantities:
- Policy = map of states to actions
- Utility = sum of discounted rewards
- Values = expected future utility from a state (max node)
- Q-Values = expected future utility from a q-state (chance node)
MDP Notation

Standard expectimax: \[V(s) = \max_a \sum_{s'} P(s'|s,a)V(s') \]

Bellman equations: \[V(s) = \max_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V(s')] \]

Value iteration: \[V_{k+1}(s) = \max_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_k(s')], \quad \forall s \]

Q-iteration: \[Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s,a \]

Policy extraction: \[\pi_V(s) = \arg\max_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V(s')] \], \quad \forall s \]

Policy evaluation: \[V_{k+1}^\pi(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^\pi(s')], \quad \forall s \]

Policy improvement: \[\pi_{new}(s) = \arg\max_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_{old}^\pi(s')], \quad \forall s \]
Optimal Quantities

- The value (utility) of a state s:
 \[V^*(s) = \text{expected utility starting in } s \text{ and acting optimally} \]

- The value (utility) of a q-state (s,a):
 \[Q^*(s,a) = \text{expected utility starting out having taken action } a \text{ from state } s \text{ and (thereafter) acting optimally} \]

- The optimal policy:
 \[\pi^*(s) = \text{optimal action from state } s \]
Gridworld Values V^*

VALUES AFTER 100 ITERATIONS
Gridworld: Q*

Q-values after 100 iterations
The Bellman Equations

How to be optimal:

Step 1: Take correct first action
Step 2: Keep being optimal
The Bellman Equations

Definition of “optimal utility” via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

\[
V^*(s) = \max_a Q^*(s, a)
\]

\[
Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]
\]

\[
V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]
\]

These are the Bellman equations, and they characterize optimal values in a way we’ll use over and over
Solving MDPs
Solving Expectimax
Solving Expectimax
Solving Expectimax
Value Iteration
Demo Value Iteration

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

VALUES AFTER 0 ITERATIONS

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.64</td>
<td>0.74</td>
<td>0.85</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.57</td>
<td>0.57</td>
<td>-1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.49</td>
<td>0.43</td>
<td>0.48</td>
<td>0.28</td>
</tr>
</tbody>
</table>

VALUES AFTER 100 ITERATIONS

[Demo: value iteration (L8D6)]
Value Iteration

Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero

Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Repeat until convergence

Complexity of each iteration: $O(S^2A)$

Theorem: will converge to unique optimal values

- Basic idea: approximations get refined towards optimal values
- Policy may converge long before values do
Bellman equations characterize the optimal values:

\[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

Value iteration computes them:

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

Value iteration is just a fixed point solution method

- ... though the \(V_k \) vectors are also interpretable as time-limited values
Value Iteration Convergence

How do we know the V_k vectors are going to converge?

Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values

Case 2: If the discount is less than 1

- Sketch: For any state V_k and V_{k+1} can be viewed as depth $k+1$ expectimax results in nearly identical search trees
- The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
- That last layer is at best all R_{MAX}
- It is at worst R_{MIN}
- But everything is discounted by γ^k that far out
- So V_k and V_{k+1} are at most $\gamma^k \text{max} |R|$ different
- So as k increases, the values converge
Solved MDP! Now what?

What are we going to do with these values??

$$V^*(s)$$

$$Q^*(s, a)$$
Piazza Poll 1

If you need to extract a policy, would you rather have
Values or Q-values?
Piazza Poll 1

If you need to extract a policy, would you rather have Values or Q-values?
Policy Methods
Policy Evaluation
Fixed Policies

Do the optimal action

Do what π says to do

Expectimax trees max over all actions to compute the optimal values

If we fixed some policy $\pi(s)$, then the tree would be simpler – only one action per state

- ... though the tree’s value would depend on which policy we fixed
Utilities for a Fixed Policy

Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy π:

$$V^\pi(s) = \text{expected total discounted rewards starting in } s \text{ and following } \pi$$

Recursive relation (one-step look-ahead / Bellman equation):

$$V^\pi(s) = \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V^\pi(s')]$$
Example: Policy Evaluation

Always Go Right

Always Go Forward
Example: Policy Evaluation

Always Go Right

Always Go Forward
Policy Evaluation

How do we calculate the V’s for a fixed policy π?

Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^\pi(s) = 0$$

$$V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^\pi(s')]$$

Efficiency: $O(S^2)$ per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system

- Solve with your favorite linear system solver
Policy Extraction
Computing Actions from Values

Let’s imagine we have the optimal values $V^*(s)$.

How should we act?

- It’s not obvious!

We need to do a mini-expectimax (one step)

$$\pi^*(s) = \arg \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

This is called policy extraction, since it gets the policy implied by the values.
Computing Actions from Q-Values

Let’s imagine we have the optimal q-values:

How should we act?
- Completely trivial to decide!

\[\pi^*(s) = \arg\max_a Q^*(s, a) \]

Important lesson: actions are easier to select from q-values than values!
Policy Iteration
Problems with Value Iteration

Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Problem 1: It’s slow – $O(S^2A)$ per iteration

Problem 2: The “max” at each state rarely changes

Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2)]
k=0

VALUES AFTER 0 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=1

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
\(k = 2 \)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>0.00</th>
<th>0.00</th>
<th>0.72</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td>-1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
\(k = 3\)

VALUES AFTER 3 ITERATIONS

\[
\begin{array}{cccc}
0.00 & 0.52 & 0.78 & 1.00 \\
0.00 & 0.43 & -1.00 & \\
0.00 & 0.00 & 0.00 & 0.00 \\
\end{array}
\]

Noise = 0.2
Discount = 0.9
Living reward = 0
$k = 4$

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k = 5

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=6

VALUES AFTER 6 ITERATIONS

<table>
<thead>
<tr>
<th>0.59</th>
<th>0.73</th>
<th>0.85</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.41</td>
<td>0.57</td>
<td>-1.00</td>
</tr>
<tr>
<td>0.21</td>
<td>0.31</td>
<td>0.43</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Noise = 0.2
Discount = 0.9
Living reward = 0
k=7

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$$k=8$$

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.63</td>
<td>0.74</td>
<td>0.85</td>
<td>1.00</td>
</tr>
<tr>
<td>0.53</td>
<td>0.57</td>
<td>-1.00</td>
<td></td>
</tr>
<tr>
<td>0.42</td>
<td>0.39</td>
<td>0.46</td>
<td>0.26</td>
</tr>
</tbody>
</table>

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k = 9

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k = 10$

Noise = 0.2
Discount = 0.9
Living reward = 0
<table>
<thead>
<tr>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.64</td>
<td>0.74</td>
<td>0.85</td>
<td>1.00</td>
</tr>
<tr>
<td>0.56</td>
<td>0.57</td>
<td>-1.00</td>
<td></td>
</tr>
<tr>
<td>0.48</td>
<td>0.42</td>
<td>0.47</td>
<td>0.27</td>
</tr>
</tbody>
</table>

VALUES AFTER 11 ITERATIONS

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0
k = 12

Values after 12 iterations:

- Top left cell: 0.64
- Top middle cell: 0.74
- Top right cell: 0.85
- Middle right cell: -1.00
- Bottom left cell: 0.49
- Bottom middle cell: 0.42
- Bottom right cell: 0.28
$k = 100$

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Policy Iteration

Alternative approach for optimal values:

- **Step 1: Policy evaluation**: calculate utilities for some fixed policy (not optimal utilities!) until convergence
- **Step 2: Policy improvement**: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
- **Repeat** steps until policy converges

This is **policy iteration**

- It’s still optimal!
- Can converge (much) faster under some conditions
Policy Iteration

Evaluation: For fixed current policy \(\pi \), find values with policy evaluation:
- Iterate until values converge:

\[
V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]
\]

Improvement: For fixed values, get a better policy using policy extraction
- One-step look-ahead:

\[
\pi_{i+1}(s) = \arg \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]
\]
Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:
- Every iteration updates both the values and (implicitly) the policy
- We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:
- We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
- After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
- The new policy will be better (or we’re done)

(Both are dynamic programs for solving MDPs)
Summary: MDP Algorithms

So you want to....

▪ Compute optimal values: use value iteration or policy iteration
▪ Compute values for a particular policy: use policy evaluation
▪ Turn your values into a policy: use policy extraction (one-step lookahead)

These all look the same!
▪ They basically are – they are all variations of Bellman updates
▪ They all use one-step lookahead expectimax fragments
▪ They differ only in whether we plug in a fixed policy or max over actions
MDP Notation

Standard expectimax:
\[V(s) = \max_a \sum_{s'} P(s'|s,a)V(s') \]

Bellman equations:
\[V(s) = \max_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V(s')] \]

Value iteration:
\[V_{k+1}(s) = \max_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_k(s')], \quad \forall s \]

Q-iteration:
\[Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s, a \]

Policy extraction:
\[\pi_V(s) = \arg\max_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V(s')], \quad \forall s \]

Policy evaluation:
\[V_{k+1}^\pi(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^\pi(s')], \quad \forall s \]

Policy improvement:
\[\pi_{new}(s) = \arg\max_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall s \]
MDP Notation

Standard expectimax:
\[
V(s) = \max_a \sum_{s'} P(s'|s,a)V(s')
\]

Bellman equations:
\[
V(s) = \max_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V(s')]
\]

Value iteration:
\[
V_{k+1}(s) = \max_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_k(s')], \quad \forall s
\]

Q-iteration:
\[
Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s,a
\]

Policy extraction:
\[
\pi_V(s) = \operatorname{argmax}_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V(s')], \quad \forall s
\]

Policy evaluation:
\[
V_{k+1}^\pi(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^\pi(s')], \quad \forall s
\]

Policy improvement:
\[
\pi_{new}(s) = \operatorname{argmax}_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_{\pi old}(s')], \quad \forall s
\]
MDP Notation

Standard expectimax:
\[V(s) = \max_a \sum_{s'} P(s'|s, a)V(s') \]

Bellman equations:
\[V(s) = \max_a \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V(s')] \]

Value iteration:
\[V_{k+1}(s) = \max_a \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V_k(s')], \quad \forall s \]

Q-iteration:
\[Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \quad \forall s, a \]

Policy extraction:
\[\pi_V(s) = \arg\max_a \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V(s')], \quad \forall s \]

Policy evaluation:
\[V^\pi_{k+1}(s) = \sum_{s'} P(s'|s, \pi(s))[R(s, \pi(s), s') + \gamma V^\pi_k(s')], \quad \forall s \]

Policy improvement:
\[\pi_{new}(s) = \arg\max_a \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V^{\pi_{old}}(s')], \quad \forall s \]
MDP Notation

Standard expectimax:

\[V(s) = \max_a \sum_{s'} P(s'|s, a)V(s') \]

Bellman equations:

\[V(s) = \max_a \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V(s')] \]

Value iteration:

\[V_{k+1}(s) = \max_a \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V_k(s')], \quad \forall \ s \]

Q-iteration:

\[Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \quad \forall \ s, a \]

Policy extraction:

\[\pi_V(s) = \arg\max_a \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V(s')], \quad \forall \ s \]

Policy evaluation:

\[V_{k+1}^\pi(s) = \sum_{s'} P(s'|s, \pi(s))[R(s, \pi(s), s') + \gamma V_k^\pi(s')], \quad \forall \ s \]

Policy improvement:

\[\pi_{new}(s) = \arg\max_a \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V_{k}^\pi_{old}(s')], \quad \forall \ s \]
Double Bandits
Double-Bandit MDP

Actions: *Blue, Red*

States: *Win, Lose*

No discount
100 time steps
Both states have the same value
Offline Planning

Solving MDPs is offline planning

- You determine all quantities through computation
- You need to know the details of the MDP
- You do not actually play the game!

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Play Red</td>
<td>150</td>
</tr>
<tr>
<td>Play Blue</td>
<td>100</td>
</tr>
</tbody>
</table>
Let’s Play!
Online Planning

Rules changed! Red’s win chance is different.
Let’s Play!
What Just Happened?

That wasn’t planning, it was learning!

- Specifically, reinforcement learning
- There was an MDP, but you couldn’t solve it with just computation
- You needed to actually act to figure it out

Important ideas in reinforcement learning that came up

- **Exploration**: you have to try unknown actions to get information
- **Exploitation**: eventually, you have to use what you know
- **Regret**: even if you learn intelligently, you make mistakes
- **Sampling**: because of chance, you have to try things repeatedly
- **Difficulty**: learning can be much harder than solving a known MDP
Next Time: Reinforcement Learning!