
Chapter 14: Optimal Winner Determination
Algorithms

Tuomas Sandholm

1 Introduction

This chapter discusses optimal winner determination algorithms for combi-

natorial auctions (CAs). We say the auctioneer has a set of items, M =

{1, 2, . . . , m}, to sell, and the buyers submit a set of package bids, B =

{B1, B2, . . . , Bn}. A package bid is a tuple Bj = 〈Sj, pj〉, where Sj ⊆ M is a

set of items and pj ≥ 0 is a price. (Note that in this chapter, n denotes the

number of such bids, not the number of bidders.) The winner determination

problem (WDP) is to label the bids as winning or losing so as to maximize

the sum of the accepted bid prices under the constraint that each item is

allocated to at most one bid:

max
n∑

j=1

pjxj s.t.
∑

j|i∈Sj

xj ≤ 1, ∀i ∈ {1..m}

xj ∈ {0, 1}

This problem is computationally complex (NP-complete and inapprox-

imable, see Lehmann, Müller and Sandholm (Chapter 12)). Since 1997, there

has been a surge of research addressing it. This chapter focuses on search

algorithms that provably find an optimal solution to the general problem

where bids are not restricted (e.g., (Sandholm 2002a, Fujishima, Leyton-

Brown, and Shoham 1999, Sandholm and Suri 2003, Andersson, Tenhunen,

and Ygge 2000, Gonen and Lehmann 2000, Leyton-Brown, Tennenholtz, and

1

Shoham 2000, Sandholm, Suri, Gilpin, and Levine 2001, Lehmann and Go-

nen 2001, van Hoesel and Müller 2001, Boutilier 2002, de Vries and Vohra

2003)).1 Because the problem isNP-complete, any optimal algorithm for the

problem will be slow on some problem instances (unless P = NP). However,

in practice modern search algorithms can optimally solve winner determina-

tion in the large, and today basically all real-world winner determination

problems are being solved using search algorithms.2

The goal is to make a set of decisions (e.g., for each bid, deciding whether

to accept or reject it). In principle, tree search algorithms work by simulating

all possible ways of making the decisions. Thus, once the search finishes, the

optimal set of decisions will have been found and proven optimal.

However, in practice, the space is much too large to search exhaustively.

The science of search is in techniques that selectively search the space while

still provably finding an optimal solution. The next section—the bulk of the

chapter—studies different design dimensions of search algorithms for win-

ner determination. Section 3 discusses state-of-the-art algorithms in that

framework. Section 4 discusses winner determination under fully expressive

bidding languages where substitutability is expressed using XOR-constraints

between bids. Finally, Section 5 provides pointers to further reading.

2 Design dimensions of search algorithms

Search algorithms for winner determination can be classified under the fol-

lowing high-level design dimensions:

• search formulation,

• search strategy,

• upper bounding techniques (including cutting planes),

• lower bounding techniques and primal heuristics,

2

• decomposition techniques (including upper and lower bounding across

components),

• techniques for deciding which question to branch on,

• techniques for identifying and solving tractable cases at search nodes,

• random restart techniques, and

• caching techniques.

The following subsections study these dimensions in order.

2.1 Search formulations

The most fundamental design dimension is the search formulation: what

class of questions is the branching question for a node chosen from?

2.1.1 Branching on items

First-generation special-purpose search algorithms for winner determination

were based on the branch-on-items search formulation (Sandholm 2002a, Fu-

jishima, Leyton-Brown, and Shoham 1999). At any node, the question to

branch on is: “What bid should this item be assigned to?” Each path in the

search tree consists of a sequence of disjoint bids, that is, bids that do not

share items with each other.

The set of items that are already used on the path is

USED =
⋃

j | bid j is on the path

Sj (1)

and let A be the set of items that are still available: A = M − USED. A

path ends when no bid can be added to it: for every bid, some of the bid’s

items have already been used on the path.

3

As the search proceeds down a path, a tally, g, is kept of the sum of the

prices of the bids accepted on the path:

g =
∑

j | bid j is accepted on the path

pj (2)

At every search node, the revenue g from the path is compared to the best

g-value found so far in the search tree to determine whether the current path

is the best solution so far. If so, it is stored as the new incumbent. Once the

search completes, the incumbent is an optimal solution.

However, care has to be taken to treat the possibility that the auction-

eer’s revenue can increase by keeping items (Sandholm 2002a). Consider an

auction of items 1 and 2. Say there is no bid for 1, a $5 bid for 2, and a $3

bid for {1, 2}. Then it is better to keep 1 and sell 2 than it would be to sell

both.

The auctioneer’s possibility of keeping items can be implemented by

placing dummy bids of price zero on those items that received no 1-item

bids (Sandholm 2002a). For example in Figure 1, if item 1 had no bids

on it alone and dummy bids were not used, the tree under 1 would not be

generated and optimality could be lost.

Bids:

1

2

3

4

5

1,2

1,3,5

1,4

2,5

3,5

5

1,2 1,3,5 1,4 1

3,5 3 2 2,5 2 22,5

4 4 4 3 3,5 3 3 3,5 3

5 5 4 4 4

Figure 1: This example search space corresponds to the bids listed on the left.
For each bid, the items are shown but the price is not.

A näıve method of constructing the search tree would include all bids

(that do not include items that are already used on the path) as the children

4

of each node. Instead, the following proposition enables a significant reduc-

tion of the branching factor by capitalizing on the fact that the order of the

bids on a path does not matter.

Proposition 2.1 (Sandholm 2002a) At each node in the search tree, it

suffices to let the children of the node be those bids that

• include the item with the smallest index among the items that are still

available (i∗ = min{i ∈ {1, . . . , m} : i ∈ A}), and

• do not include items that have already been used on the path.

Formally, for any node, θ, of the search tree,

children(θ) = {j ∈ {1, . . . , n + ndummy} | i∗ ∈ Sj, Sj ∩ USED = ∅} 3 (3)

The use of that restriction can be seen in Figure 1.

Theorem 2.2 (Sandholm 2002a) The number of leaves in the tree is no

greater than (
n+ndummy

m
)m. Also, #leaves ∈ O(mm). The number of nodes is

no greater than m ·#leaves + 1.

So, even in the worst case, the size of the tree is polynomial in the number

of bids, but exponential in the number of items.

2.1.2 Branching on bids

Instead of branching on items, newer faster winner determination algorithms

use the branch-on-bids search formulation (Sandholm and Suri 2003). At

any node, the question to branch on is: “Should this bid be accepted or

rejected?” When branching on a bid, the children in the search tree are the

world where that bid is accepted (IN, xj = 1), and the world where that bid

is rejected (OUT, xj = 0), Figure 2 Right.

5

{1,2}

IN OUT

IN

IN

OUT

IN OUT

IN

Bid graph G

Branch-on-bids formulation

Bids in this example (only items of each bid are shown; prices are not shown):
{1,2}, {2,3}, {3}, {1,3}

{3} {2,3}

{3}

{1,3}

{1,2}

{2,3}

{1,3}

{3}

{2,3}

{1,3}

{3}

{1,3}

{3}

{1,3}

{3}

Branch-on-items formulation

Dummy bids: {1}, {2}

{1,3}{1,2} {1}

{2}{2,3}{3} {2}

{3}

item 1

item 3 item 2 item 2

item 3

OUT

OUT

Figure 2: Branching on items vs. branching on bids.

The branching factor is 2 and the depth is at most n. (The depth of the

left branch is at most min{m,n}.) No dummy bids are needed: the items

that are not allocated in bids on the search path are kept by the auctioneer.

Given the branching factor and tree depth, a näıve analysis shows that the

number of leaves is at most 2n. However, a deeper analysis establishes a

drastically lower worst-case upper bound:

Theorem 2.3 (Sandholm and Suri 2003) Let κ be the number of items in

the bid with the smallest number of items. The number of leaves is no greater

than (
n

bm
κ
c + 1

)bm
κ
c

(4)

The number of nodes in the tree is 2 ·#leaves− 1.

While this is exponential in items, it is polynomial in bids—unlike the

6

näıve upper bound 2n would suggest. This is desirable because the auction-

eer can usually control the items that are for sale (if there are too many,

she can split the CA into multiple CAs), but does not want to restrict the

number of bids submitted.4 Furthermore, the average performance tends to

be significantly better than the worst case.

Sometimes the branch-on-bids formulation leads to a larger tree than the

branch-on-items formulation, see Figure 2. Opposite examples can also be

constructed—by having items on which no singleton bids have been submit-

ted; dummy bids would be added for them in the branch-on-items formula-

tion.

The main advantage of the branch-on-bids formulation is that it is in

line with the principle of least commitment (Russell and Norvig 1995). In a

branch-on-items tree, all bids containing an item are committed at a node,

while in the branch-on-bids formulation, choosing a bid to branch on does

not constrain future bid selections (except that accepting a bid precludes

later accepting bids that share items with it). Therefore, the branch-on-

bids formulation allows more refined search control—in particular, better

bid ordering. At any search node, the bid to branch on can be chosen in

an unconstrained way using information about the subproblem at that node.

Many techniques capitalize on that possibility, as we will see later in this

chapter.

2.1.3 Multivariate branching

It is known in the integer programming literature that search algorithms can

be made to branch on questions that include multiple variables. That idea

can be applied to winner determination as follows (Gilpin and Sandholm

2004). The algorithm can branch on the sum of the values of a set of vari-

ables.5 The branching question could then be, for instance: “Of these 11

bids, are at least 3 winners?”

7

Consider the remaining problem at a node (it includes only those bids

that do not share items with bids that are already accepted on the path).

Relaxing the integrality constraints xj ∈ {0, 1} of that remaining winner

determination problem to xj ∈ [0, 1] yields a linear program (LP) and it can

be solved quickly. Given a set X of variables and the LP solution x̂, one can

generate the following two branches:

∑
i∈X

xi ≤ k and
∑
i∈X

xi ≥ k + 1. (5)

where k =
⌊∑

i∈X x̂i

⌋
. No other value of k should be considered: any other

integer value would cause one child to be exactly the same as the node, en-

tailing infinitely deep search on that branch if that branch is ever explored.

Similarly, no set of variables X where
∑

i∈X x̂i is integral should be a branch-

ing candidate: one of the branches will not exclude the current LP solution,

so that child will be identical to the node.

While branching on more than one variable at a time may feel less power-

ful than branching on individual variables because the branch does not seem

to make as specific a commitment, we have:

Proposition 2.4 (Gilpin and Sandholm 2004) The search tree size (mea-

sured in terms of the number of nodes or number of leaves) is the same

regardless of how many (and which) variables are used in different branches

(as long as trivial branches where a child is identical to its parent are not

used).

Thus Theorem 2.3 applies to multivariate branching as well.

Proposition 2.4 is for exhaustive search. If additional techniques (dis-

cussed later in this chapter) are used, such as upper bounding, then search

tree size can differ based on how many (and which) variables are used for

branching at nodes. Experimentally, multivariate branching tends to lead

to smaller trees than the other two search formulations discussed above, but

8

it spends more time at each search node (deciding which set X should be

branched on).

The different types of branching question classes could also be merged.

For example, a search algorithm could branch on an item at a node, branch on

a bid at another node, and branch on a multivariate question at yet another

node.

2.2 Search strategies

The second important design dimension of a search algorithm is the search

strategy: what order is the tree searched in? The following subsections cover

the most pertinent search strategies.

2.2.1 Depth-first search

The first special-purpose search algorithm for winner determination (Sand-

holm 2002a) used the branch-on-items formulation and the depth-first search

strategy, where the search always proceeds from a node to an unvisited child,

if one exists. If not, the search backtracks. Depth-first search is desirable in

that only the nodes on one search path (and their children) need to be kept

in memory at any one time. So, O((n + ndummy) ·m) nodes are in memory.

The strategy yields an anytime algorithm: the algorithm is able to out-

put a feasible solution at any time, and solution quality improves over time

(because the algorithm keeps track of the best solution found so far (in-

cumbent)). The user can stop the algorithm and use the incumbent if the

algorithm is taking too long. In experiments, most of the revenue was gen-

erated early on as desired: there were diminishing returns to computation.

Search strategies that are informed by upper bounds yield faster winner

determination. Specifically, a heuristic function h gives an upper bound on

how much revenue the items that are not yet allocated on the current search

path can contribute. The following subsections discuss search strategies that

9

use such upper bounding. Later, Section 2.4 presents different ways of com-

puting such bounds.

2.2.2 Depth-first branch-and-bound search

The simplest informed search strategy is depth-first branch-and-bound (DF-

BnB). It creates the search tree in depth-first order, but prunes (discontinues)

a path if the node’s g + h value is no greater than the value of the incum-

bent. (Recall that g is the sum of the prices of the bids accepted on the

path.) This is valid because the condition guarantees that a better incum-

bent cannot exist in the subtree whose creation was omitted by pruning. The

memory usage of DFBnB is as low as that of depth-first search, and pruning

leads to significantly smaller search trees. Fujishima, Leyton-Brown, and

Shoham (1999) present DFBnB experiments in the branch-on-items formu-

lation, and Sandholm, Suri, Gilpin, and Levine (2001) in the branch-on-bids

formulation.

2.2.3 A* and best-bound search

The most famous informed search strategy is A* search (Hart, Nilsson, and

Raphael 1968). When a search node is expanded, its children are generated

and stored in memory. The node itself is removed from memory. The node

to expand next is always the node from memory that is most promising, as

measured by having the highest value of g + h. Once a node that has no

children (because all bids are decided) comes up for expansion from memory,

that is an optimal solution, and the search ends.

A* leads to the smallest possible search tree: no tree search algorithm

can provably find an optimal solution without searching all the nodes that

A* searches (Dechter and Pearl 1985). A downside is that A* often runs out

of memory because the fringe of the search tree is stored. (With depth d and

branching factor b, the number of nodes in memory is O(bd).)

10

Best-bound search, a common search strategy in the integer programming

literature (Wolsey 1998), is identical to A*, except that the following refine-

ments are often used in practice.

• Approximate child evaluation: In order to avoid having to care-

fully compute upper bounds on a node’s children at the time when

the children are first generated, only approximate upper bounds (that

sometimes underestimate) for the children are used in practice. There-

fore, the children come up for expansion from memory in approximate

order of g +h. Thus, unlike in A*, once a node with no undecided bids

comes up for expansion from memory, that might not be an optimal

solution. Rather, the search must continue until all potentially better

nodes have been expanded.

• Diving bias: A child of the current node is expanded instead of ex-

panding the most promising node if the latter is not too much more

promising. While this increases tree size, it can save search time be-

cause expanding a child is usually drastically faster than expanding a

nonadjacent node. The reason is that data structures (e.g., LP-related

ones) can be incrementally updated when moving between a node and

a child, while they require significant reconstruction when moving to a

nonadjacent node.6 (All of the search strategies that proceed in depth-

first order automatically enjoy the benefits of diving.)

2.2.4 Iterative deepening A* search

Like DFBnB, iterative deepening A* (IDA*) search (Korf 1985), achieves the

same low memory usage, enjoys the benefits of diving, and takes advantage

of upper bounds for pruning. IDA* guesses how much revenue (f-limit) can

be obtained, and runs a depth-first search where a path is pruned if g + h <

f-limit. If a solution is not found, the guess was too optimistic, in which case

11

a less optimistic guess is carefully made, depth-first search is executed again,

and so on.

The following pseudocode shows how Sandholm (2002a) applied IDA* to

winner determination. Instead of using depth-first search as the subroutine,

this variant uses DFBnB (with an f-limit). The difference manifests itself only

in the last IDA* iteration. That is the first iteration where an incumbent is

found, and this variant of IDA* saves some search by using the incumbent’s

value for pruning.

Global variable: f-limit

Algorithm 2.1 (IDA*)

// Returns a set of winning bids that maximizes the sum of the bid prices

1. f-limit := ∞
2. Loop

(a) winners, new-f := DFBNB-WITH-F-LIMIT(M , ∅, 0)

(b) if winners 6= null then return winners

(c) f-limit := min(new-f, 0.95 · f-limit) 7

Algorithm 2.2 DFBNB-WITH-F-LIMIT(A, winners, g)

// Returns a set of winning bids and a new f-cost

1. If g + h(A) < f-limit then return null, g + h(A) // Pruning

2. If the current node has no children, then // End of a path reached

(a) f-limit := g // DFBnB rather than depth-first search

(b) return winners, g

3. maxRevenue := 0, bestWinners := null, next-f := 0

12

4. For each bid b ∈ children of current node

(a) solution, new-f := DFBNB-WITH-F-LIMIT(A−Sb, winners ∪ {b},
g + pb)

(b) If solution 6= null and new-f > maxRevenue, then

i. maxRevenue := new-f

ii. bestWinners := solution

(c) next-f := max(next-f, new-f)

5. If bestWinners 6= null then return bestWinners, maxRevenue

else return null, next-f

Experimentally, IDA* is two orders of magnitude faster for winner de-

termination than depth-first search. By setting f-limit to 0 instead of ∞,

IDA* turns into DFBnB. IDA* can lead to fewer search nodes than DFBnB

because the f-limit allows pruning of parts of the search space that DFBnB

would search. Conversely, DFBnB can lead to fewer nodes because IDA*

searches nodes close to the root multiple times.

2.2.5 Exotic search strategies

IDA* and DFBnB explore a larger number of nodes than A*. Their run time

can be improved by using more memory, while still using much less than

A* does. Search strategies that do that include SMA* (Russell 1992) and

recursive best-first search (Korf 1993). A downside of SMA*, like A*, is that

it requires node-related data structures to be laboriously reconstructed. A

downside of recursive best-first search is that it leads to significant amounts

of redundant search on problems where the edge costs of the search tree are

mostly distinct numbers, as is the case in winner determination.

13

2.3 An example algorithm: CABOB

Let us now consider an example algorithm within which the other design

dimensions of search algorithms for winner determination can be discussed

specifically. The CABOB (Combinatorial Auction Branch on Bids) (Sand-

holm, Suri, Gilpin, and Levine 2001) algorithm is a DFBnB search that

branches on bids.

The value of the best solution found so far (i.e., the incumbent) is stored

in a global variable f̃ ∗. Initially, f̃ ∗ = 0.

The algorithm maintains a conflict graph structure called the bid graph,

denoted by G, see Figure 2. The nodes of the graph correspond to bids that

are still available to be appended to the search path, that is, bids that do

not include any items that have already been allocated. Two vertices in G

share an edge whenever the corresponding bids share items.8, 9 As vertices

are removed from G when going down a search path, the edges that they

are connected to are also removed. As vertices are re-inserted into G when

backtracking, the edges are also reinserted.10

For readability, the following pseudocode of CABOB only shows how

values are updated, and omits how the incumbent (set of winning bids) is

updated in conjunction with every update of f̃ ∗.

As discussed later, CABOB uses a technique for pruning across indepen-

dent subproblems (components of G). To support this, it uses a parameter,

MIN , to denote the minimum revenue that the call to CABOB must return

(not including the revenue from the path so far or from neighbor components)

to be competitive with the incumbent. The revenue from the bids that are

winning on the search path so far is called g. It includes the lower bounds

(or actual values) of neighbor components of each search node on the path

so far.

The search is invoked by calling CABOB(G, 0, 0).

Algorithm 2.3 CABOB(G, g, MIN)

14

1. Apply cases COMPLETE and NO EDGES (explained later)

2. Run depth-first search on G to identify the connected components of G;

let c be number of components found, and let G1, G2, ..., Gc be the c

independent bid graphs

3. Calculate an upper bound Ui for each component i

4. If
∑c

i=1 Ui ≤ MIN , then return 0

5. Apply case INTEGER (explained later)

6. Calculate a lower bound Li for each component i

7. ∆ ← g +
∑c

i=1 Li − f̃ ∗

8. If ∆ > 0, then

f̃ ∗ ← f̃ ∗ + ∆

MIN ← MIN + ∆

9. If c > 1 then goto (11)

10. Choose next bid Bk to branch on (use articulation bids first if any)

10.a. G ← G− {Bk}
10.b. For all Bj s.t. Bj 6= Bk and Sj ∩ Sk 6= ∅,

G ← G− {Bj}
10.c. f̃ ∗old ← f̃ ∗

10.d. fin ← CABOB(G, g + pk,MIN − pk)

10.e. MIN ← MIN + (f̃ ∗ − f̃ ∗old)

10.f. For all Bj s.t. Bj 6= Bk and Sj ∩ Sk 6= ∅,
G ← G ∪ {Bj}

10.g. f̃ ∗old ← f̃ ∗

10.h. fout ← CABOB(G, g,MIN)

15

10.i. MIN ← MIN + (f̃ ∗ − f̃ ∗old)

10.j. G ← G ∪ {Bk}
10.k. Return max{fin, fout}

11. F ∗
solved ← 0

12. Hunsolved ←
∑c

i=1 Ui, Lunsolved ←
∑c

i=1 Li

13. For each component i ∈ {1, . . . , c} do

13.a. If F ∗
solved + Hunsolved ≤ MIN , return 0

13.b. g′i ← F ∗
solved + (Lunsolved − Li)

13.c. f̃ ∗old ← f̃ ∗

13.d. f ∗i ← CABOB(Gi, g + g′i,MIN − g′i)

13.e. MIN ← MIN + (f̃ ∗ − f̃ ∗old)

13.f. F ∗
solved ← F ∗

solved + f ∗i

13.g. Hunsolved ← Hunsolved − Ui

13.h. Lunsolved ← Lunsolved − Li

14. Return F ∗
solved

2.4 Upper bounding techniques

As discussed, in all of the informed search methods, upper bounds on how

much the unallocated items can contribute are used to prune the search (e.g.,

in CABOB in steps (3) and (4)). Pruning usually reduces the search time by

orders of magnitude.

First-generation special-purpose winner determination algorithms (Sand-

holm 2002a, Fujishima, Leyton-Brown, and Shoham 1999) used special-purpose

upper bounding techniques. The main idea was to use as an upper bound the

sum over unallocated items of the item’s maximum contribution (Sandholm

16

2002a): ∑
i∈A

c(i), where c(i) = max
j|i∈Sj

pj

|Sj| (6)

Tighter bounds are obtained by recomputing c(i) every time a bid is ap-

pended to the path—because all bids j that share items with that bid can

be excluded from consideration (Sandholm 2002a).11

The value of the linear program (LP) relaxation of the remaining winner

determination problem gives another upper bound.

LP

max
n∑

j=1

pjxj

∑

j|i∈Sj

xj ≤ 1, ∀i ∈ {1..m}

xj ≥ 0

xj ∈ IR

DUAL

min
m∑

i=1

yi

∑
i∈Sj

yi ≥ pj, ∀j ∈ {1..n}

yi ≥ 0

yi ∈ IR

The LP can be solved in polynomial time in the size of the input (which

itself is Θ(nm)) using interior point methods, or fast on average using, for

example, the simplex method (Nemhauser and Wolsey 1999). Alternatively,

one can use the DUAL because its optimal value is the same as LP’s. Often

the DUAL is used in practice because as the search branches, the parent’s

DUAL solution is feasible for the child’s DUAL and can usually be optimized

using a relatively small number of pivots.12 (The parent’s LP solution is

infeasible for the child’s LP, so the child’s LP takes relatively long to solve).

It is not always necessary to run the LP/DUAL to optimality. The al-

gorithm could look at the condition in step (4) of CABOB to determine the

threshold revenue that the LP (DUAL) has to produce so that the search

branch would not (would) be pruned. If the threshold is reached, LP/DUAL

can stop. However, CABOB always runs the LP/DUAL to completion be-

17

cause CABOB uses the solutions for several other purposes beyond upper

bounding, as discussed later.

Linear programming-based upper bounding usually leads to faster search

times (Sandholm, Suri, Gilpin, and Levine 2001) than any of the other up-

per bounding methods proposed for winner determination before (Sandholm

2002a, Fujishima, Leyton-Brown, and Shoham 1999, Sandholm and Suri

2003). This is likely due to better bounding, better bid ordering, and the ef-

fect of the INTEGER special case, described below. The time taken to solve

the linear program is greater than the per-node time with the other bound-

ing methods, but the reduction in tree size usually amply compensates for

that. However, on a non-negligible portion of instances the special-purpose

bounding heuristics yield faster overall search time (Leyton-Brown 2003).

2.4.1 Branch-and-cut algorithms

The LP upper bound can be tightened by adding cutting planes (aka. cuts).

These are additional constraints that do not affect the solution of the integer

program, but do constrain the LP polytope. For example, if the bid graph G

contains a set of nodes H that form an odd-length cycle longer than 3, and no

nonadjacent pair of nodes in H share an edge (the nodes in H are said to form

an odd hole), then it is valid to add the odd-hole cut
∑

j∈H xj ≤ (|H| − 1)/2.

There are also cut families, for example Gomory cuts (Wolsey 1998), that

can be applied to all integer programs, not just winner determination.

It is largely an experimental art as to which cuts, if any, are worth adding.

That depends not only on the problem, but also on the instance at hand. The

more cuts are added, the fewer nodes the search takes due to enhanced upper

bounding. On the other hand, as more cuts are added, the time spent at each

node increases due to the time it takes to generate the cuts and solve the LP

that now has a larger number of constraints. There is a vast literature on cuts

(see, for example, Garfinkel and Nemhauser (1969), Loukakis and Tsouros

18

(1983), Pardalos and Desai (1991), and the textbooks by Nemhauser and

Wolsey (1999) and by Wolsey (1998)). One principle is to only add cutting

planes that cut off the currently optimal point from the LP.

Some cuts are global: it is valid to leave them in the LP throughout the

search. (Nevertheless, it is sometimes worth removing global cuts because

they may slow down the LP too much.) Other cuts are local: they are valid

in the subtree of the search rooted at a given node, but might not be valid

globally. Such cuts can be added at the node, but they have to be removed

when the search is not within that subtree.

A cut can also be made to constrain the LP polytope more, by carefully

moving the cut deeper into the polytope (by including a larger number of

the variables in the cutting plane and setting their coefficients), while guar-

anteeing that it does not cut off any integer solutions. This is called lifting.

(See, for example, Wolsey (1998).) Again, there is a tradeoff: the more the

algorithm lifts, the fewer search nodes are explored due to improved upper

bounding, but the more time is spent per search node due to the time it

takes to lift.

2.5 Lower bounding techniques and primal heuristics

Lower bounding techniques are another design dimension of search algo-

rithms. At a search node (e.g., in CABOB in step (6)) a lower bound is

computed on the revenue that the remaining items can contribute. If this

bound is high, it allows the incumbent value, f̃ ∗, to be updated, leading to

more pruning in the subtree rooted at that node. Generating good incum-

bents early is also desirable from an anytime perspective.

One famous lower bounding technique is rounding (Hoffman and Padberg

1993). CABOB uses the following rounding technique. In step (3), CABOB

solves the remaining LP anyway, which gives an “acceptance level” xj ∈ [0, 1]

for every remaining bid j. CABOB inserts all bids with xj > 1
2

into the lower

19

bound solution. It then tries to insert the rest of the bids in decreasing order

of xj, skipping bids that share items with bids already in the lower bound

solution. Experiments showed that lower bounding did not help significantly.

Other techniques for constructing a good feasible solution for a node

include local branching where a tree search of at most k variable changes

is conducted from some feasible solution to improve it (Fischetti and Lodi

2002), and relaxation-induced neighborhood search where variables that are

equal in the feasible solution and LP are fixed, and a search is conducted to

optimize the remaining variables (Danna, Rothberg, and Le Pape 2004) (the

search can be restricted to k changes). In either method, k can be increased

based on allowable time.

Additional lower bounds cannot hurt in terms of the number of search

nodes because the search algorithm can use the best (i.e., highest) of the

lower bounds. However, there is a tradeoff between reducing the size of the

search tree and the time spent computing lower bounds.

2.6 Decomposition techniques

Decomposition techniques are another powerful tool in search algorithms.

The idea is to partition the bids into sets (aka. connected components) so

that no bid from one set shares items with any bid from any other set. Winner

determination can then be conducted in each set separately (and in parallel

if desired).

At every search node, in step (2) CABOB runs an O(|E| + |V |) time

depth-first search in the bid graph G. (Here, E is the set of edges in the

graph, and V is the set of vertices.) Each tree in the depth-first forest is a

connected component of G. Winner determination is then conducted in each

component independently. Since search time is superlinear in the size of G,

a decomposition leads to a time savings, and experiments have shown that

the savings can be drastic (Sandholm, Suri, Gilpin, and Levine 2001).

20

2.6.1 Upper and lower bounding across components

Perhaps surprisingly, one can achieve further pruning by exploiting infor-

mation across the components (Sandholm, Suri, Gilpin, and Levine 2001).

When starting to solve a component, CABOB checks how much that com-

ponent would have to contribute to revenue in the context of what is already

known about bids on the search path so far and the connected components

that arose from decompositions on the path. Specifically, when determining

the MIN value for calling CABOB on a component, the revenue that the

current call to CABOB has to produce (the current MIN value), is decre-

mented by the revenues from solved neighbor components and the lower

bounds from unsolved neighbor components. (A neighbor component is a

connected component that arose at the same decomposition.) The use of

the MIN variable causes the algorithm to work correctly even if on a single

search path there are several search nodes where decomposition occurred,

interleaved with search nodes where decomposition did not occur.

Every time a better global solution is found and f̃ ∗ is updated, all MIN

values in the search tree are incremented by the amount of the improvement

since now the bar of when search is useful has been raised. CABOB handles

these updates without separately traversing the tree when an update occurs:

CABOB directly updates MIN in step (8), and updates the MIN value of

any parent node after the recursive call to CABOB returns.

CABOB also uses lower bounding across components. At any search

node, the lower bound includes the revenues from the bids that are winning

on the path, the revenues from the solved neighbor components of search

nodes on the path, the lower bounds of the unsolved neighbor components

of search nodes on the path, and the lower bound on the revenue that the

unallocated items in the current search node can contribute.13

21

2.7 Techniques for deciding which question to branch on

The search formulations, search strategies, and the CABOB pseudocode leave

open the question: “Which question should the search algorithm branch on

at this node?” While any choice maintains correctness, different choices yield

orders of magnitude difference in speed in the informed search methods. This

section discusses techniques for making that choice.

2.7.1 Forcing a decomposition via articulation bids

In addition to checking whether a decomposition has occurred, CABOB

strives for a decomposition. In the bid choice in step (10), it picks a bid

that leads to a decomposition, if such a bid exists. Such bids whose deletion

disconnects G are called articulation bids. Articulation bids are identified in

O(|E| + |V |) time by a slightly modified depth-first search in G (Sandholm

and Suri 2003). If there are multiple articulation bids, CABOB branches on

the one that minimizes the size of the largest connected component.

The strategy of branching on articulation bids may conflict with price-

based bid ordering heuristics (which usually suggest branching on bids with

high price and a low number of items). Does one of these schemes dominate

the other?

Definition 1 In an articulation-based bid choosing scheme, the next bid to

branch on is an articulation bid if one exists. Ties can be resolved arbitrarily,

as can cases where no articulation bid exists.

Definition 2 In a price-based bid choosing scheme, the next bid to branch

on is

arg max
j∈V

ν(pj, |Sj|), (7)

where V is the set of vertices in the remaining bid graph G, and ν is a

function that is nondecreasing in pj and nonincreasing in |Sj|. Ties can be

resolved arbitrarily, for example, preferring bids that articulate.

22

Theorem 2.5 (Sandholm and Suri 2003) For any given articulation-based

bid choosing scheme and any given price-based bid choosing scheme, there

are instances where the former leads to less search, and instances where the

latter leads to less search.

However, experiments showed that in practice it pays off to branch on ar-

ticulation bids if they exist (because decomposition tends to reduce search

drastically).

Even if a bid is not an articulation bid, and would thus not lead to a

decomposition if rejected, it might lead to a decomposition if it is accepted

(because that removes the bid’s neighbors from G as well). This is yet another

reason to try the IN branch before the OUT branch (value ordering). Also, in

bid ordering (variable ordering), we can give first preference to articulation

bids, second preference to bids that articulate on the winning branch only,

and third preference to bids that do not articulate on either branch (among

them, the price-based bid ordering could be used).

During the search, the algorithm could also do shallow lookaheads—for

the purpose of bid ordering—to identify combinations (aka. cutsets) of bids

that would disconnect G. Bids within a small cutset should be branched on

first. (However, identifying the smallest cutset is intractable.)

To keep the computation at each search tree node linear time in the

size of G, CABOB simply gives first priority to articulation bids, and if

there are none, uses other bid ordering schemes, discussed in the next three

subsecstions.

2.7.2 Should an algorithm branch on confidence or on uncer-
tainty?

It has become clear to me that different search strategies are best served by

different branching heuristics, and perhaps surprisingly, the best branching

heuristics for A* and DFBnB abide to opposite principles.

23

If good anytime performance is desired, it makes sense to use the DFBnB

search strategy. In that context it is best to generate promising branches first

because that yields good solutions early, and as a side effect, better pruning

of the search tree via upper bounding. So, the principle is that the algorithm

should always branch on a question for which it knows a good answer with

high confidence. For example, in the context of the branch-on-items formu-

lation, Fujishima, Leyton-Brown, and Shoham (1999) renumbered the items

before the search so that the items i were in descending order of maxj|i∈Sj

pj

|Sj | ,

and that was the branching order. Even better item ordering could be ac-

complished by dynamically reordering the remaining items for every subtree

in the search—in light of what bids and items are still available.

On the other hand, if provable optimality is desired, A* tends to be prefer-

able over DFBnB because it searches fewer nodes before proving optimality.

Good variable ordering heuristics for A* are the opposite of those for DFBnB:

the principle is that the algorithm should branch on a question about whose

correct answer the algorithm is very uncertain! For example, the best-known

branching heuristic in the operations research literature (e.g., (Wolsey 1998,

page 99)) is the most fractional variable heuristic. In the branch-on-bids for-

mulation of winner determination this translates to the most fractional bid

heuristic: branching on a bid whose LP value, xj, is closest to 1
2

(Sandholm,

Suri, Gilpin, and Levine 2001). The idea is that the LP is least sure about

these bids, so it makes sense to resolve that uncertainty rather than to invest

branching on bids about which the LP is “more certain”. More often than

not, the bids whose xj values are close to 0 or 1 tend to get closer to those

extreme values as search proceeds down a path, and in the end, LP will give

an integer solution. Therefore those bids never end up being branched on.

In both algorithm families, to enhance pruning through upper bounding,

it is best to visit the children of a node in most-promising-first order. (In

A* this happens automatically due to the order in which nodes come up

24

for expansion from memory, as discussed.) For example, within the branch-

on-items formulation, Fujishima, Leyton-Brown, and Shoham (1999) used a

child ordering heuristic where bids j are always visited in descending order

of
pj

|Sj | . Even better child ordering could be accomplished by dynamically

reordering the children at each search node—in light of what bids and items

are still available. (For the particular child-ordering metric above, there is

no difference between static and dynamic.)

2.7.3 Sophisticated numeric bid ordering heuristics

An elaborate study has been conducted on bid ordering heuristics for the

branch-on-bids formulation with the DFBnB search strategy in the context

of CABOB (Sandholm, Suri, Gilpin, and Levine 2001).14 Experiments were

conducted with the following bid ordering heuristics:

• Normalized Bid Price (NBP) (Sandholm and Suri 2003): Branch on a

bid with the highest
pj

(|Sj |)α .15

• Normalized Shadow Surplus (NSS) (Sandholm, Suri, Gilpin, and Levine

2001): The problem with NBP is that it treats each item as equally

valuable. It could be modified to weight different items differently based

on static prices that, for example, the seller guesses before the auction.

A more sophisticated approach is to weight the items by their “values”

in the remaining subproblem. The shadow price, yi, from the linear

program DUAL of the remaining problem serves as a proxy for the

value of item i.16 We branch on the bid whose price gives the highest

surplus above the value of the items17 (normalized by the values so the

surplus has to be greater if the bid uses valuable items):

pj −
∑

i∈Sj
yi

(
∑

i∈Sj
yi)α

(8)

25

Experimentally, the following modification to the normalization leads

to faster performance:
pj −

∑
i∈Sj

yi

log(
∑

i∈Sj
yi)

(9)

We call this scheme NSS.

• Bid Graph Neighbors (BGN) (Sandholm, Suri, Gilpin, and Levine 2001):

Branch on a bid with the largest number of neighbors in the bid graph

G. The motivation is that this will allow the search to exclude the

largest number of still eligible bids from consideration.

• Number of Items (Sandholm, Suri, Gilpin, and Levine 2001): Branch

on a bid with the largest number of items. The motivation is the same

as in BGN.

• One Bids (OB) (Sandholm, Suri, Gilpin, and Levine 2001): Branch on

a bid whose xj-value from LP is closest to 1. The idea is that the more

of the bid is accepted in the LP, the more likely it is to be competitive.

• Most fractional bid, described in the previous section. Branching heuris-

tics of this type are most appropriate for A*-like search strategies

(where the search strategy itself drives the search toward promising

paths), while CABOB uses DFBnB.

Experiments were conducted on several problem distributions using all

possible pairs of these bid ordering heuristics for primary bid selection and

tie-breaking, respectively. Using a third heuristic to break remaining ties

was also tried, but that never helped. The speed difference between CABOB

with the best heuristics and CABOB with the worst heuristics was greater

than two orders of magnitude. The best composite heuristic (OB+NSS) used

OB first, and broke ties using NSS.

26

2.7.4 Choosing the bid ordering heuristic dynamically

On certain distributions, OB+NSS was best while on distributions where the

bids included a large number of items, NSS alone was best. The selective

superiority of the heuristics led to the idea of choosing the bid ordering heuris-

tic dynamically based on the characteristics of the remaining subproblem. A

distinguishing characteristic between the distributions was LP density:

density =
number of nonzero coefficients in LP

number of LP rows× number of LP columns
(10)

OB+NSS was best when density was less than 0.25 and NSS was best other-

wise. Intuitively, when the LP table is sparse, LP is good at “guessing” which

bids to accept. When the table is dense, the LP makes poor guesses (most

bids are accepted to a small extent). In those cases the price-based scheme

NSS (that still uses the shadow prices from the LP) was better. Therefore, in

CABOB, at every search node the density is computed, and the bid ordering

scheme is chosen dynamically (OB+NSS if density is less than 0.25, NSS

otherwise).

2.7.5 Solution seeding

As a fundamentally different bid ordering methodology (Sandholm, Suri,

Gilpin, and Levine 2001), stochastic local search (e.g., Hoos and Boutilier

(2000))—or any other heuristic algorithm for winner determination—could

be used to come up with a good solution fast, and then that solution could

be forced to be the left branch (IN-branch) of CABOB’s search tree. (The

technique could be applied at the root, or also at other nodes.) Committing

(as an initial guess) to the entire set of accepted bids from the approximate

solution in this way would give CABOB a more global form of guidance in

bid ordering than conducting bid ordering on a per-bid basis. To refine this

method further, CABOB could take hints (for example from the approxima-

tion algorithm) as to how “surely” different bids that are accepted in the

27

approximate solution should be accepted in the optimal solution. In the

left branch (IN-branch) of CABOB, the “most sure” bids should then be

assigned closest to the root of the search tree, because bids near the root will

be the last ones to be backtracked in the search. This ordering will allow

good solutions to be found early, and (mainly due to upper bounding) avoids

unnecessary search later on.

2.7.6 Lookahead

A famous family of techniques for deciding what question to branch on is

lookahead. (Some potentially promising subset of) candidate branching ques-

tions are considered, and a shallow search below the node is conducted for

each one of those questions. The question with the highest “score” is then

chosen to be the question to branch on.

Motivated by the goal of getting to a good solution quickly, a traditional

scoring method is to take the weighted average of the leaves’ values where

more promising leaves are weighted more heavily (a leaf’s value is g + h

where g is the sum of the prices of the accepted bids on that path, and h is

an upper bound on how much remaining items can contribute) (Applegate,

Bixby, Chvátal, and Cook 1994). This is called strong branching. A recent

alternative idea, motivated by the role of branching as a means of reducing

uncertainty, is to set the score to equal the expected reduction in entropy of

the leaves’ LP values (Gilpin and Sandholm 2004). This is called information-

theoretic branching. Depending on the problem instance, either method can

be superior.

These approaches can be used in all of the search formulations: branch-

on-items, branch-on-bids, and multivariate branching.

28

2.8 Identifying and solving tractable subproblems at nodes

A general approach to speeding up the search is to, at each search node,

solve the remaining problem in polynomial time using some special-purpose

method rather than continuing search below that node, if the remaining

problem happens to be tractable (Sandholm and Suri 2003).18

2.8.1 COMPLETE case

In step (1), CABOB checks whether the bid graph G is complete: |E| =
n(n−1)

2
. If so, only one of the remaining bids can be accepted. CABOB thus

picks the bid with highest price, updates the incumbent if appropriate, and

prunes the search path.

2.8.2 NO EDGES case

If G has no edges, CABOB accepts all of the remaining bids, updates the

incumbent if appropriate, and prunes the search path.

2.8.3 INTEGER case

A classic observation is that if the LP happens to return integer values (xj = 0

or xj = 1) for all bids j (this occurs surprisingly frequently), that solution can

be used as the actual solution for the node in question (rather than having

to search under that node). CABOB does this in step (5). (If only some of

the xj values are integral, one cannot simply accept the bids with xj = 1 or

reject the bids with xj = 0 (Sandholm, Suri, Gilpin, and Levine 2001).)

Sufficient conditions under which the LP provides an integer-valued so-

lution are reviewed by Müller (Chapter 13). For some of those classes there

exists algorithms for identifying and solving the problem faster than LP,

for instance the NO EDGES class above, and the class where items can be

numbered so that each remaining bid is for consecutive items (possibly with

wraparound) (Sandholm and Suri 2003).

29

2.8.4 Tree-structured items

If the remaining items can be laid out as nodes in a graph so that each re-

maining bid is for a connected component in the graph, then winners can

be determined in time that is exponential only in the treewidth of the graph

(and polynomial in the number of items and the number of bids) (Conitzer,

Derryberry, and Sandholm 2004). A polynomial algorithm for identifying

whether such a graph with treewidth 1 (i.e., a tree) exists has been devel-

oped (Conitzer, Derryberry, and Sandholm 2004), so handling of that case

can be integrated into tree search algorithms. The question of whether such

graphs with treewidth greater than 1 can be identified in polynomial time

remains open. (The requirement that each bid is for one component is sharp:

even in line graphs, if two components per bid are allowed, winner determi-

nation is NP-complete.)

2.8.5 Technique for exploiting part of the remaining problem
falling into a polynomially solvable class

Polynomial solvability can be leveraged even if only part of the problem at

a search node falls into a tractable class (Sandholm and Suri 2003). This

section demonstrates this for one polynomially solvable class.

Bids that include a small number of items can lead to significantly deeper

search than bids with many items because the latter exclude more of the

other bids due to overlap in items (Sandholm 2002a). Furthermore, bids

with a small number of items are ubiquitous in practice. Let us call bids

with 1 or 2 items short and other bids long.19 Winners can be optimally

determined in O(n3) worst case time using a weighted maximal matching

algorithm (Edmonds 1965) if the problem has short bids only (Rothkopf,

Pekeč, and Harstad 1998).

To solve problems with both long and short bids efficiently, Edmonds’s

algorithm can be integrated with search as follows (Sandholm and Suri 2003).

30

We restrict the branch-on-bids search to branching on long bids only, so

it never needs to branch on short bids. At every search node, Edmonds’s

algorithm is executed using the short bids whose items have not yet been

allocated to any accepted long bids on the search path so far. Edmonds’s

algorithm returns a set of winning short bids. Those bids, together with the

accepted long bids from the search path, constitute a candidate solution. If

it is better than the incumbent, the candidate becomes the new incumbent.

This technique can be improved further by using a dynamic definition of

“short” (Sandholm and Suri 2003). If an item x belongs to only one long bid

b in the remaining bid graph G, then the size of b can, in effect, be reduced

by one. As search proceeds down a path, this method may move some of the

long bids into the short category, thereby further reducing search tree size.

(When backtracking, the deleted items are reinserted into bids.)

2.9 Random restart techniques

Random restarts have been widely used in local search algorithms, but re-

cently they have been shown to speed up tree search algorithms as well on

certain problems (Gomes, Selman, and Kautz 1998). The idea is that if

(mainly due to unlucky selection of branching questions) the search is taking

a long time, it can pay off to keep trying the search again with different

randomly selected branching questions. Sandholm, Suri, Gilpin, and Levine

(2001) tested whether sophisticated random restart techniques, combined

with careful randomized bid ordering, help in winner determination. The

experiments showed that these techniques actually slow CABOB down.

2.10 Caching techniques

Another technique commonly used in search algorithms is caching. It can

also be applied to search algorithms for winner determination. For example,

Fujishima, Leyton-Brown, and Shoham (1999) used caching in the branch-

31

on-items formulation. Here I present how caching can be used in the branch-

on-bids formulation, but the same ideas apply to other search formulations.

If the remaining bid graph is the same in different nodes of the search

tree (this occurs if the same items are used up, but by different sets of bids),

then the remaining subproblems under those nodes are the same. The idea

in caching is that the answer from solving the subproblem is stored (aka.

cached) in memory so that when that subproblem is encountered again, it

does not have to be solved anew—rather, the answer can be looked up from

the cache.

One subtlety is that usually the subproblem is not searched completely

when it is encountered, due to pruning through upper bounding. Therefore,

in many cases only an upper bound h on the subproblem’s value is stored

in the cache rather than the exact value of the subproblem. The algorithm

should therefore also store in the cache, with each solution, whether the value

is exact or an upper bound. Then, if the same subproblem occurs in a search

node elsewhere in the tree, there are several cases, to be checked in order:

• If the cached value is exact, it can be used as the value of the subprob-

lem, and the search does not need to continue into the subtree. The

remaining cases are for cached values that are not exact.

• If the new node has a greater (or equal) MIN -value than the node

where the value of the same subproblem was cached (that is, the path

to the new node is less promising than the path to the old node was),

then the subtree can be pruned.20 The following cases pertain if the

new node has a lesser MIN -value than the old node.

• If the cached h-value is less than (or equal to) the MIN -value, the

subtree can be pruned.

• If the cached h-value is greater than the MIN -value, then it is not valid

to use the cached value because the optimal solution might be found in

32

the subtree. In that case, the search has to continue into the subtree.

(Once the subtree is solved deeply enough to allow for pruning with

that MIN -value—or an exact solution is found—the new solution to

the subtree is stored in the cache in place of the old.)

For large search trees, there is not enough memory to cache the values

of all subtrees. It is important to decide which subtree solutions the algo-

rithm should cache (and which it should remove from the cache when the

cache becomes full). There are at least three principles for this: 1) cache

subproblems that are encountered often, 2) cache subproblems that repre-

sent a large amount of search effort, and 3) cache subproblems that can be

indexed rapidly (i.e., quickly retrieve the value or determine that it is not in

the cache).

3 State of the art

Despite the fact that winner determination is NP-complete, modern search

algorithms can optimally solve large CAs in practice. The time it takes to

solve a problem depends not only on the number of items and bids, but

also on the specific structure of the problem instance: which bids include

which items, and what the prices of the bids are. The rest of this section

summarizes some of the performance results; more detail can be found in

Sandholm, Suri, Gilpin, and Levine (2001).

So far in the literature, the performance of winner determination algo-

rithms has been evaluated on problem instances generated randomly from

a variety of distributions (Sandholm 2002a, Fujishima, Leyton-Brown, and

Shoham 1999, Andersson, Tenhunen, and Ygge 2000), most of which strive

to be realistic in terms of how many items package bids tend to include, and

in terms of bid prices. In some of the distributions (such as the CATS distri-

butions (Leyton-Brown, Pearson, and Shoham 2000)—see also Chapter 18),

33

the choice of items for each package bid is motivated by potential application

domains.

On easier distributions (such as CATS and certain less structured dis-

tributions), optimal winner determination scales to hundreds or thousands

of items, and tens of thousands of bids in seconds. On hard distributions

(such as one where each package bid includes 5 randomly selected items and

has price $1), optimal winner determination only scales to tens of items and

hundreds of bids in a minute.

It is interesting to see how the state-of-the-art general-purpose mixed

integer program solvers, CPLEX and XPress-MP, fare against state-of-the-

art algorithms specifically designed for winner determination like CABOB.

All three use the branch-on-bids search formulation (but could be modified

to use other formulations), and LP-based upper bounding. CPLEX and

XPress-MP use cutting planes, while vanilla CABOB does not. None of the

three use random restarts (except some versions of CABOB not compared

here) or caching. CPLEX and XPress-MP only have general methods for

deciding which variable to branch on, while CABOB uses custom schemes

discussed above. CABOB has several techniques for identifying and solving

tractable cases at search nodes; the other two use only the INTEGER case.

CPLEX and XPress-MP use algebraic preprocessing while CABOB only uses

a domination check between bids. (Sophisticated preprocessing techniques

specifically for winner determination are discussed in Sandholm (2002a).)

CPLEX and XPress-MP often run out of memory on hard instances be-

cause their default strategy is best-bound search (with approximate child

evaluation and diving bias). CABOB does not run out of memory due to

its DFBnB search strategy.21 The depth-first order and the tailored variable

ordering heuristics also cause CABOB to have significantly better anytime

performance than CPLEX. When measuring time to find the optimal solution

and to prove its optimality, CPLEX tends to be somewhat faster on many

34

random problem distributions, but CABOB is faster on other random prob-

lem distributions. On structured instances that are somewhat decomposable

(even if they are not decomposable at the root of the search), CABOB is

drastically faster than CPLEX due to its decomposition techniques, identify-

ing and branching on articulation bids, and upper and lower bounding across

components. XPress-MP tends to perform similarly to CPLEX.

On real-world winner determination problems—which usually have forms

of expressiveness beyond package bids, such as side constraints from the bid

taker and bidders, and price-quantity discount schedules—special-purpose

search algorithms can be orders of magnitude faster than general-purpose

solvers because there is more domain-specific knowledge that the former can

capitalize on. Those problems also tend to lead to other important issues such

as insufficient numeric stability of CPLEX and XPress-MP (telling whether

a real number is an integer, equals another real, or exceeds another number),

yielding incorrect answers in terms of feasibility and optimality. Simply

tightening the tolerance parameters does not solve this: for certain purposes

in those solvers the tolerances must be sufficiently loose.

Interestingly, it was recently shown (Schuurmans, Southey, and Holte

2001) that optimal search algorithms perform favorably in speed on winner

determination even against incomplete search algorithms such as stochastic

local search (e.g., Hoos and Boutilier (2000)) that do not generally find the

optimal solution.

4 Substitutability and XOR-constraints

The winner determination methods discussed so far in this chapter, and most

other work on winner determination (e.g., (Rothkopf, Pekeč, and Harstad

1998, DeMartini, Kwasnica, Ledyard, and Porter 1999)), are based on a set-

ting where any number of a bidder’s package bids may get accepted. This

is called the OR bidding language (WDPOR in Lehmann, Müller and Sand-

35

holm (Chapter 12)). It suffices when the items are complementary, that is,

each bidder’s valuation function is superadditive. However, when some of

the items exhibit substitutability (valuations are subadditive), this language

is insufficient. Say an agent bids $4 for an umbrella, $5 for a raincoat, and $7

for both. The auctioneer could allocate both to that agent separately, and

claim that the agent’s bid for the combination would value at $5 + $4 = $9

instead of $7.

This problem was addressed in the context of the eMediator Internet

auction server prototype (see http://www.cs.cmu.edu/~amem/eMediator),

where the XOR bidding language was introduced (Sandholm 2002a, Sand-

holm 2002b) (WDPXOR in Lehmann, Müller and Sandholm (Chapter 12)).

In effect, each bidder submits exclusive-or (XOR) constraints among all her

package bids, so at most one can be accepted. This enables bidders to ex-

press general preferences (with complementarity and substitutability): any

valuation function v : 2m → IR. For example, a bidder in a 4-item auction

may submit the following:

({1}, $4) XOR ({2}, $4) XOR ({3}, $2) XOR ({4}, $2) XOR

({1, 2}, $8) XOR ({1, 3}, $6) XOR ({1, 4}, $6) XOR

({2, 3}, $6) XOR ({2, 4}, $6) XOR ({3, 4}, $3) XOR

({1, 2, 3}, $10) XOR ({1, 2, 4}, $10) XOR ({1, 3, 4}, $7) XOR

({2, 3, 4}, $7) XOR ({1, 2, 3, 4}, $11)

Full expressiveness is important because it allows the bidders to express

their valuations exactly, and winner determination uses that information to

determine a socially optimal allocation of items. Without full expressiveness,

economic efficiency is compromised. Full expressiveness is also important

because it is a necessary and sufficient property of a bidding language for

motivating truthful bidding (Sandholm 2002a, Sandholm 2002b). Without

it, a bidder may not be able to express her preferences even if she wanted

36

to. With it, the VCG mechanism can be used to make truthful bidding a

dominant strategy. (VCG is described in Ausubel and Milgrom (Chapter 1).)

In the VCG, winners are determined once overall, and once per winning agent

without any of that agent’s bids. That makes fast winner determination even

more crucial. Note that just removing one winning bid at a time would not

constitute a truth-promoting mechanism, and truth promotion can also be

lost if winner determination is conducted approximately (Sandholm 2002a,

Sandholm 2002b).

While the XOR bidding language is fully expressive, representing one’s

preferences in that language often requires a large number of package bids. To

maintain full expressiveness, but at the same time to make the representation

more concise, the OR-of-XORs bidding language was introduced (Sandholm

2002b). In this language, a set of bids can be combined with XOR, forming an

XOR-disjunct. These XOR-disjuncts are then combined with non-exclusive

ORs to represent independence. For example, a bidder who wants to submit

the same offer as in the example above, can submit the following more concise

expression:

[({1}, $4)]

OR

[({2}, $4)]

OR

[({3}, $2) XOR ({4}, $2) XOR ({3, 4}, $3)]

The XOR bidding language is a special case of the OR-of-XORs bidding

language. Therefore, the shortest way to represent a value function in the

OR-of-XORs bidding language is never longer than in the XOR bidding lan-

guage.

Another fully expressive bidding language is the OR* bidding language (Nisan

2000): items are thought of as nodes in a graph, and exclusion edges (i.e.,

37

XOR-constraints) can be submitted between arbitrary pairs of nodes. An

equivalent encoding is to use the OR bidding language, and have mutual

exclusion between a pair of bids encoded by a dummy item that each bid in

the pair includes (Fujishima, Leyton-Brown, and Shoham 1999). (However,

the latter does not work if (some) bids can be accepted partially.) Bidding

languages are discussed in detail in Nisan (Chapter 9).

Search algorithms for winner determination can be easily adapted to han-

dle XOR-constraints between bids (Sandholm 2002a, Sandholm and Suri

2003), be it in the XOR bidding language, the OR-of-XORs language, or

the OR* language. If two bids are in the same XOR-disjunct, and one of

them is accepted on the search path, the other should not be accepted on

that path. This is easy to accomplish. For example, if the bid graph method

is used, we simply add an extra edge into the graph for every pair of bids

that is combined with XOR.

Constraints actually reduce the size of the search space. However, in

practice they tend to make winner determination slower because many of

the techniques (e.g., upper bounding) in the search algorithms do not work

as well: a larger fraction of the search space ends up being searched. This

is the case even when the upper bounding is improved by adding to the LP

an extra constraint for each XOR-disjunct:
∑

j∈D xj ≤ 1, where D is the

set of bids within the XOR-disjunct. Furthermore, the technique that avoids

branching on short bids (Section 2.8.5) does not apply with explicit XOR-

constraints, nor does the technique for tree-structured items (Section 2.8.4).

If XOR-constraints are encoded using dummy items, those techniques apply,

of course, but their effectiveness is compromised.

5 Conclusion

Optimal winner determination is important for economic efficiency and pro-

cedural fairness. Optimal winner determination, together with a fully expres-

38

sive bidding language, is also needed to motivate truthful bidding. While

winner determination is NP-complete, modern tree search algorithms can

provably optimally solve the problem in the large in practice. Therefore,

CAs are now technologically feasible, and have started to be broadly fielded.

One practical issue in iterative CAs is that winners have to be determined

multiple times (at the end of each “round”, or in some designs even every

time a new bid is submitted). In such settings, it is not desirable to solve

winner determination anew every time. Instead, incremental algorithms use

results from earlier winner determinations to speed up the current winner

determination (Sandholm 2002a, Parkes and Ungar 2000, Kastner, Hsieh,

Potkonjak, and Sarrafzadeh 2002).

Another desideratum of an iterative CA is the ability to provide quotes:

“What would I have to bid in order to win bundle S (assuming no further

bids are submitted)?” Quotes are subtle in CAs because there generally are

no accurate item prices (so bundles have to be priced), and as further bids are

submitted, the quote on a given bundle can increase or decrease (Sandholm

2002a). Furthermore, computing a quote for a given bundle is NP-complete.

Algorithms for quote computation, incremental quote computation, and for

computing upper and lower bounds on quotes are presented in Sandholm

(2002a).

Many of the techniques of this chapter apply to related and general-

ized combinatorial markets as well, such as CAs where there are multiple

indistinguishable units of each item (Sandholm 2002b, Sandholm and Suri

2003, Leyton-Brown, Tennenholtz, and Shoham 2000, Gonen and Lehmann

2000, Lehmann and Gonen 2001, Sandholm, Suri, Gilpin, and Levine 2002),

combinatorial reverse auctions (where there is one buyer who tries to ful-

fill his demand using combinatorial bids from multiple sellers) (Sandholm,

Suri, Gilpin, and Levine 2002), and combinatorial exchanges (where there

are multiple buyers and multiple sellers) (Sandholm 2002b, Sandholm and

39

Suri 2003, Sandholm, Suri, Gilpin, and Levine 2002). Many of the techniques

can also be generalized to capture reserve prices on items, on bundles, and

with substitutability (Sandholm and Suri 2003). Many of them can also be

used when there is no free disposal (Sandholm 2002a, Sandholm and Suri

2003), but winner determination becomes harder (Sandholm, Suri, Gilpin,

and Levine 2002). Finally, the algorithms can be generalized to markets

with side constraints (from buyers and/or sellers) and non-price attributes

(Sandholm and Suri 2001, Davenport and Kalagnanam 2001). Interesting

winner determination issues arise also in the setting where bids can be ac-

cepted fractionally (Kothari, Sandholm, and Suri 2003).

Acknowledgments

Parts of this research were funded by CombineNet, Inc., and parts by NSF

CAREER Award IRI-9703122 and NSF grants IIS-9800994, ITR IIS-0081246,

ITR IIS-0121678, and ITR IIS-0427858.

Notes

1These algorithms inherit ideas from search algorithms for related prob-
lems such as weighted set packing, weighted maximum clique, and weighted
independent set (e.g., (Balas and Yu 1986, Babel and Tinhofer 1990, Babel
1991, Balas and Xue 1991, Nemhauser and Sigismondi 1992, Mannino and
Sassano 1994, Balas and Xue 1996, Pardalos and Desai 1991, Loukakis and
Tsouros 1983)).

2Search algorithms only construct those parts of the search space that
are necessary to construct in light of the bids submitted. The method of
enumerating exhaustive partitions of items and (at least the näıve execution
of) the dynamic programming method—discussed in Lehmann, Müller and
Sandholm (Chapter 12)—construct, in effect, the entire search space as if
each combination of items had been bid on. That is drastically slower (except
when the number of items is tiny).

40

3The correct children can be found quickly using a secondary search in a
binary trie data structure (Sandholm 2002a), or using binning techniques
(Garfinkel and Nemhauser 1969, Fujishima, Leyton-Brown, and Shoham
1999). The latter approach requires items to be numbered statically, thus
reducing the efficiency of item ordering heuristics (discussed later).

4Due to limited time and effort of the bidders, the number of bids in all
but the tiniest CAs is much smaller than the number of bundles in practice.

5More generally, any hyperplane—with (positive or negative) coefficients
on the variables—could be used as the branching question.

6In principle, such reconstruction could be avoided by maintaining a copy
of the data structures with each search node, but that causes the search to
usually run out of memory rapidly, and is thus not done in state-of-the-art
mixed integer programming solvers.

7There is no reason to use an f-limit that is higher than the highest value
of f that was lower than the f-limit in the previous IDA* iteration. The 0.95
criterion was used to decrease the f-limit even more quickly. If it is decreased
too rapidly, search time increases because the last iteration will have a large
number of search nodes in DFBNB-WITH-F-LIMIT. If it is decreased too
slowly, search time increases because each iteration repeats a large portion
of the search from the previous iteration.

8The bid graph can be constructed incrementally as bids are submitted.

9The bid graph can be prohibitively large to store if the problem is huge.
One can address this by generating the graph explicitly only for those sub-
trees of the search tree where the graph is small (Sandholm, Suri, Gilpin,
and Levine 2001).

10Sandholm and Suri (2003) present data structures for representing the
bid graph in a way that supports efficient removal and addition of a bid’s
neighbors (and the connecting edges). Efficient conflict graph data structures
for cut generation are presented in Atamtürk, Nemhauser, and Savelsbergh
(2000).

11Fast ways of maintaining such upper bounds are discussed in Sandholm
and Suri (2003), and approximations of this heuristic in Fujishima, Leyton-
Brown, and Shoham (1999).

41

12CABOB does not make copies of the LP table. Instead, it incrementally
deletes (reinserts) columns corresponding to the bids being deleted (rein-
serted) in the bid graph G as the search proceeds down a path (backtracks).

13Due to upper and lower bounding across components (and due to up-
dating of f̃ ∗), the order of tackling the components can potentially make a
difference in speed.

14In terms of ordering the answers to try for a given question (aka. value
ordering), the basic version of CABOB always tries the IN-branch first. The
reason is that it tries to include good bids early so as to find good solu-
tions early. This enables more pruning through upper bounding. It also
improves the anytime performance. On the other hand, the most promi-
nent general-purpose mixed integer program solvers, CPLEX and XPress-
MP, (being variants of best-bound search) sometimes try the OUT-branch
first. Future research could experiment with that in CABOB as well.

15α = 0 (selecting a bid that has highest price) gives too much preference
to bids with many items. Such bids are likely to use up a large number
of items, thus reducing significantly the revenue that can be collected from
other bids. Conversely, it seems that α = 1 (selecting a bid with the highest
per-item price) gives too much preference to bids with few items. If there
are two bids with close to equal per-item price, it would be better to choose
a bid with a larger number of items so that the high per-item revenue could
be obtained for many items. Experimentally, α ∈ [0.8, 1] yields fastest
performance (Sandholm, Suri, Gilpin, and Levine 2001).

16In the binary case (where bids have to be accepted entirely or not at
all), individual items cannot generally be given prices (in a way that would
motivate bidders to self-select packages so that the overall optimal allocation
is achieved), but each yi value from the continuous DUAL gives an upper
bound on the price of item i. (The solution to DUAL is generally not unique).

17A similar numerator can be used for a different purpose in another tech-
nique called column generation, which is sometimes used in other search
applications (Barnhart, Johnson, Nemhauser, Savelsbergh, and Vance 1998).
It is best-suited when the problem is so huge that not even a single LP fits
in memory. CAs of that magnitude do not exist currently.

18If the identification and solving using the special-purpose method is still
slow, one could use it in selected search nodes only.

42

19We define short in this way because the problem is NP-complete already
if 3 items per bid are allowed (Rothkopf, Pekeč, and Harstad 1998).

20One could generalize the application of caching using the observation
that an upper bound on a set of bids is also an upper bound on any subset
of those bids (and a lower bound is also a lower bound on any superset).

21CPLEX and XPress-MP also support DFBnB, but that option usually
makes them slower.

References

Andersson, Arne, Mattias Tenhunen, and Fredrik Ygge (2000), “Integer Pro-

gramming for Combinatorial Auction Winner Determination,” in Interna-

tional Conference on Multi-Agent Systems, pp. 39–46, Boston.

Applegate, David, Robert Bixby, Vasek Chvátal, and William Cook (1994),

“The traveling salesman problem,” Discussion paper, DIMACS.

Atamtürk, Alper, George Nemhauser, and Martin Savelsbergh (2000), “Con-

flict Graphs in Solving Integer Programming Problems,” European Journal

of Operational Research, 121, 40–55.

Babel, Luitpold (1991), “Finding Maximal Cliques in Arbitrary and Special

Graphs,” Computing, 46, 321–341.

Babel, Luitpold, and Gottfried Tinhofer (1990), “A Branch and Bound Algo-

rithm for the Maximum Weighted Clique Problem,” ZOR - Methods and

Models of Operations Research, 34, 207–217.

Balas, Egon, and Jue Xue (1991), “Minimum Weighted Coloring of Trian-

gulated Graphs, with Application to Maximum Weighted Vertex Packing

and Clique Finding in Arbitrary Graphs,” SIAM Journal on Computing,

20, 209–221.

43

Balas, Egon, and Jue Xue (1996), “Weighted and Unweighted Maximum

Clique Algorithms with Upper Bonds from Fractional Coloring,” Algorith-

mica, 15, 397–412.

Balas, Egon, and Chang Sung Yu (1986), “Finding a Maximum Clique in an

Arbitrary Graph,” SIAM Journal on Computing, 15, 1054–1068.

Barnhart, Cynthia, Ellis Johnson, George Nemhauser, Martin Savelsbergh,

and Pamela Vance (1998), “Branch-and-price: column generation for solv-

ing huge integer programs,” Operations Research, 46, 316–329.

Boutilier, Craig (2002), “Solving Concisely Expressed Combinatorial Auction

Problems,” in National Conference on Artificial Intelligence, pp. 359–366,

Edmonton.

Conitzer, Vincent, Jonathan Derryberry, and Tuomas Sandholm (2004),

“Combinatorial Auctions with Structured Item Graphs,” in National Con-

ference on Artificial Intelligence, pp. 212–218, San Jose.

Danna, Emilie, Edward Rothberg, and Claude Le Pape (2004), “Exploring

relaxation induced neighborhoods to improve MIP solutions,” Mathemat-

ical Programming, Forthcoming.

Davenport, Andrew J, and Jayant Kalagnanam (2001), “Price Negotiations

for Procurement of Direct Inputs,” Discussion Paper RC 22078, IBM.

de Vries, Sven, and Rakesh Vohra (2003), “Combinatorial Auctions: A Sur-

vey,” INFORMS Journal on Computing, 15, 284–309.

Dechter, Rina, and Judea Pearl (1985), “Generalized best-first search strate-

gies and the optimality of A*,” Journal of the ACM, 32, 505–536.

44

DeMartini, Christine, Anthony Kwasnica, John Ledyard, and David Porter

(1999), “A New and Improved Design For Multi-Object Iterative Auc-

tions,” Discussion Paper 1054, CalTech, Social Science.

Edmonds, Jack (1965), “Maximum matching and a polyhedron with 0,1 ver-

tices,” Journal of Research of the National Bureau of Standards, B, 125–

130.

Fischetti, Matteo, and Andrea Lodi (2002), “Local branching,” Mathematical

Programming, 98, 23–47.

Fujishima, Yuzo, Kevin Leyton-Brown, and Yoav Shoham (1999), “Taming

the Computational Complexity of Combinatorial Auctions: Optimal and

Approximate Approaches,” in International Joint Conference on Artificial

Intelligence, pp. 548–553, Stockholm.

Garfinkel, Robert, and George Nemhauser (1969), “The Set Partitioning

Problem: Set Covering with Equality Constraints,” Operations Research,

17, 848–856.

Gilpin, Andrew, and Tuomas Sandholm (2004), “Information-Theoretic Ap-

proaches to Branching in Search,” Mimeo.

Gomes, Carla, Bart Selman, and Henry Kautz (1998), “Boosting Combinato-

rial Search Through Randomization,” in National Conference on Artificial

Intelligence, Madison.

Gonen, Rica, and Daniel Lehmann (2000), “Optimal Solutions for Multi-

Unit Combinatorial Auctions: Branch and Bound Heuristics,” in ACM

Conference on Electronic Commerce, pp. 13–20, Minneapolis.

Hart, Peter, Nils Nilsson, and Bertram Raphael (1968), “A Formal Basis for

the Heuristic Determination of Minimum Cost Paths,” IEEE Transactions

on Systems Science and Cybernetics, 4, 100–107.

45

Hoffman, Karla, and Manfred Padberg (1993), “Solving Airline Crew-

Scheduling Problems by Branch-and-Cut,” Management Science, 39, 657–

682.

Hoos, Holger, and Craig Boutilier (2000), “Solving Combinatorial Auctions

using Stochastic Local Search,” in National Conference on Artificial Intel-

ligence, pp. 22–29, Austin.

Kastner, Ryan, Christina Hsieh, Miodrag Potkonjak, and Majid Sarrafzadeh

(2002), “On the Sensitivity of Incremental Algorithms for Combinatorial

Auctions,” in IEEE workshop on Advanced Issues of E-Commerce and

Web-Based Information Systems.

Korf, Richard (1985), “Depth-first iterative-deepening: An optimal admissi-

ble tree search,” Artificial Intelligence, 27, 97–109.

Korf, Richard (1993), “Linear-Space Best-First Search,” Artificial Intelli-

gence, 62, 41–78.

Kothari, Anshul, Tuomas Sandholm, and Subhash Suri (2003), “Solving

Combinatorial Exchanges: Optimality via a Few Partial Bids,” in ACM

Conference on Electronic Commerce, pp. 236–237, San Diego.

Lehmann, Daniel, and Rica Gonen (2001), “Linear Programming Helps Solv-

ing Large Multi-unit Combinatorial Auction,” Mimeo, Leibniz Center for

Research in Computer Science, Hebrew University.

Leyton-Brown, Kevin (2003), “Resource Allocation in Competitive Multia-

gent Systems,” Ph.D. thesis, Stanford University.

Leyton-Brown, Kevin, Mark Pearson, and Yoav Shoham (2000), “Towards

a Universal Test Suite for Combinatorial Auction Algorithms,” in ACM

Conference on Electronic Commerce, pp. 66–76, Minneapolis.

46

Leyton-Brown, Kevin, Moshe Tennenholtz, and Yoav Shoham (2000), “An

Algorithm for Multi-Unit Combinatorial Auctions,” in National Confer-

ence on Artificial Intelligence, Austin.

Loukakis, Emmanuel, and Constantine Tsouros (1983), “An Algorithm for

the Maximum Internally Stable Set in a Weighted Graph,” International

Journal of Computer Mathematics, 13, 117–129.

Mannino, Carlo, and Antonio Sassano (1994), “An Exact Algorithm for the

Maximum Stable Set Problem,” Computational Optimization and Appli-

cation, 3, 242–258.

Nemhauser, George, and Gabriele Sigismondi (1992), “A Strong Cutting

Plane/Branch-and-Bound Algorithm for Node Packing,” Journal of the

Operational Research Society, 43, 443–457.

Nemhauser, George, and Laurence Wolsey (1999), Integer and Combinatorial

Optimization, John Wiley & Sons.

Nisan, Noam (2000), “Bidding and Allocation in Combinatorial Auctions,”

in ACM Conference on Electronic Commerce, pp. 1–12, Minneapolis.

Pardalos, Panos, and Nisha Desai (1991), “An Algorithm for Finding A Max-

imum Weighted Independent Set in An Arbitrary Graph,” International

Journal of Computer Mathematics, 38, 163–175.

Parkes, David, and Lyle Ungar (2000), “Iterative combinatorial auctions:

Theory and practice,” in National Conference on Artificial Intelligence,

pp. 74–81, Austin.

Rothkopf, Michael, Aleksandar Pekeč, and Ronald Harstad (1998), “Com-

putationally Manageable Combinatorial Auctions,” Management Science,

44, 1131–1147.

47

Russell, Stuart (1992), “Efficient Memory-Bounded Search Methods,” in Eu-

ropean Conference on Artificial Intelligence, pp. 1–5, Vienna.

Russell, Stuart, and Peter Norvig (1995), Artificial Intelligence: A Modern

Approach, Prentice Hall.

Sandholm, Tuomas (2002a), “Algorithm for Optimal Winner Determination

in Combinatorial Auctions,” Artificial Intelligence, 135, 1–54. Early ver-

sions: ICE-98 talk, WUCS-99-01 1/28/99, IJCAI-99.

Sandholm, Tuomas (2002b), “eMediator: A Next Generation Electronic

Commerce Server,” Computational Intelligence, 18, 656–676. Early ver-

sions: AGENTS-00, AAAI-99 Workshop on AI in Electronic Commerce,

WU-CS-99-02 1/99.

Sandholm, Tuomas, and Subhash Suri (2001), “Side Constraints and Non-

Price Attributes in Markets,” in IJCAI-2001 Workshop on Distributed

Constraint Reasoning, pp. 55–61, Seattle.

Sandholm, Tuomas, and Subhash Suri (2003), “BOB: Improved Winner De-

termination in Combinatorial Auctions and Generalizations,” Artificial In-

telligence, 145, 33–58. Early version: AAAI-00.

Sandholm, Tuomas, Subhash Suri, Andrew Gilpin, and David Levine (2001),

“CABOB: A Fast Optimal Algorithm for Combinatorial Auctions,” in

International Joint Conference on Artificial Intelligence, pp. 1102–1108,

Seattle. Forthcoming in Management Science.

Sandholm, Tuomas, Subhash Suri, Andrew Gilpin, and David Levine (2002),

“Winner Determination in Combinatorial Auction Generalizations,” in In-

ternational Conference on Autonomous Agents and Multi-Agent Systems,

pp. 69–76, Bologna. Early version: AGENTS-01 Workshop on Agent-

Based Approaches to B2B.

48

Schuurmans, Dale, Finnegan Southey, and Robert Holte (2001), “The Ex-

ponentiated Subgradient Algorithm for Heuristic Boolean Programming,”

in International Joint Conference on Artificial Intelligence, pp. 334–341,

Seattle.

van Hoesel, Stan, and Rudolf Müller (2001), “Optimization in electronic

marketplaces: Examples from combinatorial auctions,” Netnomics, 3, 23–

33.

Wolsey, Laurence (1998), Integer Programming, John Wiley & Sons.

49

