Warm-up:
Can you write these logic problems as a CSP?

What are the variables? the domains? the constraints?
What techniques could you use to solve them?
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Announcements

Assignments:
= P2: Optimization
= Due Sat 2/22, 10 pm

= HWS5 out AFTER the Midterm
= Due 2/25,10 pm
Midterm 1 Exam
= Mon 2/17, in class
= Recitation Fri is a review session

= See Piazza post for details



Al: Representation and Problem Solving

Propositional Logic

Instructors: Pat Virtue & Stephanie Rosenthal
Slide credits: CMU Al, http://ai.berkeley.edu



Warm-up:
Can you write these logic problems as a CSP?

What are the variables? the domains? the constraints?
What techniques could you use to solve them?
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Warm-up:
Where is the knowledge held in CSPs? What is the goal of a CSP?
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Logical Agents

What assignment of variables satisfies the constraints (knowledge base)?
What new knowledge can be inferred from the KB?

Percepts

Knowledge Base
)

Inference

Actions




Logical Agents

So what do we tell our knowledge base (KB)?
= Facts (sentences)
= The grass is green
= The sky is blue
= Rules (sentences)
= Eating too much candy makes you sick
= When you’re sick you don’t go to school
» Percepts and Actions (sentences)
= Pat ate too much candy today

What happens when we query the agent?
" Inference — new sentences created from old
= Pat is not going to school today



Nonogram Puzzle

Logical Reasoning as a CSP
Binary variable for each square

Constraints:
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Wumpus World

Logical Reasoning as a CSP

Variables
" B =breeze felt

" §; =stench smelt
= P, =pithere
" W, =wumpus here

= G=gold
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http://thiagodnf.github.io/wumpus-world-simulator/



http://thiagodnf.github.io/wumpus-world-simulator/

Wumpus World

Constraints on Variables

B; <=>>=1 neighbor is a pit

S;; <=>>=1 neighbor is wumpus

Py <=> all NSEW neighbors B=T

W;, <=> all NSEW neighbors S=T

" G;<=>IB;and!S; and glitter
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http://thiagodnf.github.io/wumpus-world-simulator/

Worlds

We have a set of variables and constraints.

What are we trying to figure out?

What worlds are possible given the information that we have?
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Models

Assignments of values to variables

How do we represent possible worlds with models and knowledge bases?

How do we then do inference with these representations?



Wumpus World

World has 5 locations
[1,1], [2,1], [3,1], [1,2], [2,2]

Knowledge base
Nothing in [1,1]
Breeze in [2,1]

What do we know about the pit locations?
P1,1= F
P,,=F
Everything else is unknown



Wumpus World

World has 5 locations
[1,1], [2,1], [3,1], [1,2], [2,2]

Knowledge base
Nothing in [1,1]
Breeze in [2,1]

Possible Models for Pits
P1,1=F, P2’1=F, P1,2 fpz,z 1P3,1
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Wumpus World

World has 5 locations
[1,1], [2,1], [3,1], [1,2], [2,2]

Knowledge base
Nothing in [1,1]
Breeze in [2,1]

Possible Models for Pits
P1,1=F, P2,1=F, P1,2 fpz,z 1P3,1

p—
e
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Using Knowledge base rules, infer some of these models aren’t possible
possible worlds that could satisfy this KB are circled



Wumpus World
Possible Models

P1,2 P2,2 P3,1

= Knowledge base

= Nothingin[1,1]
" Breezein [2,1]

= Query ay:

= Nopitin[1,2]



Wumpus World
Possible Models

P1,2 P2,2 P3,1

= Knowledge base

= Nothingin[1,1]
= Breezein|[2,1]

= Query ay:

= No pitin[2,2]



Role of Queries in Logical Agents

In both CSPs and logic, we can determine whether there is a satisfying
assignment of values to variables

In CSPs, we use arc consistency and forward chaining to eliminate
single elements of a domain, one at a time

In logic, we can query the KB to determine if every possible assignment
of variables has particular properties

This allows us to “learn” or infer new information



Logic Language

Natural language?

Propositional logic

= Syntax: P v (—Q A R); X; < (Raining = Sunny)

= Possible world: {P=true, Q=true, R=false, S=true} or 1101

= Semantics: o A [ is true in a world iff is o true and 3 is true (etc.)

First-order logic

= Syntax: Vx dy P(x,y) A —=Q(Joe,f(x)) = f(x)=f(y)

= Possible world: Objects 04, 0,, 03; P holds for <0,,0,>; Q holds for <o5>; f(0,)=04;
Joe=03; etc.

= Semantics: ¢(o) is true in a world if 6=0;and ¢ holds for o;; etc.



Propositional Logic



Piazza Poll 1

If we know that A V B and =B V C are true,
what do we know about AV C?

i. AV C isguaranteed to be true
ii. AV C isguaranteed to be false

iii. We don’t have enough information to say anything
definitive about AV C



Piazza Poll 1

If we know that A V B and =B V C are true, what do we know about A v C?

A B C AVB —-BvC AV C
false false false false true false
false false true false true true
false true false true false false
false true true true true true
true false false true true true
true false true true true true
true true false true false true
true true true true true true




Piazza Poll 1

If we know that A V B and =B V C are true, what do we know about A v C?

A B C AVB —-BvC AV C
false false false false true false
false false true false true true
false true false true false false
false true true true true true
true false false true true true
true false true true true true
true true false true false true
true true true true true true




Piazza Poll 1

If we know that A V B and =B V C are true,
what do we know about AV C?

i. AV C isguaranteed to be true



Piazza Poll 2

If we know that A V B and =B V C are true,

what do we know about A7

i. Aisguaranteed to be true
ii. A isguaranteed to be false

iii. We don’t have enough information to say anything
definitive about A



Piazza Poll 2

If we know that AV B and =B V C are true, what do we know about A7

A B C AVB —-BvC AV C
false false false false true false
false false true false true true
false true false true false false
false true true true true true
true false false true true true
true false true true true true
true true false true false true
true true true true true true




Piazza Poll 2

If we know that A V B and =B V C are true,

what do we know about A7

iii. We don’t have enough information to say anything
definitive about A



Propositional Logic
Symbol:

= Variable that can be true or false

= We'll try to use capital letters, e.g. A, B, P, ,

= Ofteninclude True and False

Operators:

= —A:notA

= A AB:AandB (conjunction)

= A v B:AorB (disjunction) Note: this is not an “exclusive or”
= A= B:Aimplies B (implication). If A then B

= A< B:Aifandonlyif B (biconditional)

Sentences



Propositional Logic Syntax

Given: a set of proposition symbols {X;, X, ..., X,;}
= (we often add True and False for convenience)

X;is a sentence

If o is a sentence then —a is a sentence

If o and 3 are sentences then o A 3 is a sentence
If o and 3 are sentences then o v 3 is a sentence
If o and 3 are sentences then oo = 3 is a sentence
If o and 3 are sentences then o < B is a sentence
And p.s. there are no other sentences!



Notes on Operators

o V B isinclusive or, not exclusive




Truth Tables

o V B is inclusive or, not exclusive

av

o ¥ oanf
F F F
F T F
T F F
T T T

— | 4]+




Notes on Operators

o V B isinclusive or, not exclusive

o= B is equivalentto -a Vv f3
= Says who?



Truth Tables

o = f§ is equivalentto ~a Vv f3

o + a=>pB| —~a | ~avp
F F T T T
F T T T T
T F F F F
T T T F T




Notes on Operators

o V B isinclusive or, not exclusive

o= B is equivalentto -a Vv f3
= Says who?

o < Bis equivalentto (x= B) A (B = «)
" Proveit!



Truth Tab

les

o < Bis equivalentto (a= B) A (B = a)

a B lacepl a=B B>a| (a=p) A (B>a)

F F T T T T

F | T F T F F

T | F F F T F

T T T T T T
Equivalence: it’s true in all models. Expressed as a logical sentence:

(a=p)e[(a=B)AB= a)




Literals

A literal is an atomic sentence:
= True

= False

= Symbol

= — Symbol



Sentences as Constraints

Adding a sentence to our knowledge base constrains the

number of possible models: possible p Q R
Models false false | false
KB: Nothing false false true
false true false
false true true
true false false
true false true
true true false

true true true




Sentences as Constraints

Adding a sentence to our knowledge base constrains the

number of possible models:
P Possible P Q R

Models false false false

KB: Nothin
& false false true

KB: [(P A-Q) V (QA-P)] =R

false true false
false true true
true false false
true false true
true true false

true true true




Sentences as Constraints

Adding a sentence to our knowledge base constrains the

number of possible models:
g Possible P Q R

Models false false false

KB: Nothing
false false true
KB: [(PA-Q)V(QA-P)]=R
false true false
KB:R,[(PA-Q)V (QA-P)]=R
false true true
true false false
true false true
true true false

true true true




Entailment

Entailment: a |= 3 (“o entails B” or “P follows from o”) iff in every world
where o is true, 3 is also true

" |.e., the a-worlds are a subset of the 3-worlds [models(a.) = models([3)]

Usually we want to know if KB |= query
= models(KB) — models(query)
= In other words
» KB removes all impossible models (any model where KB is false)
= |f B is true in all of these remaining models, we conclude that 3 must be true



Nonogram Example
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Given the KB of constraints, we can query particular squares to determine if they are
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Wumpus World

World has 5 locations
[1,1], [2,1], [3,1], [1,2], [2,2]

Knowledge base
Nothing in [1,1]
Breeze in [2,1]

Possible Models for Pits
P1,1=F, P2’1=F, P1,2 fpz,z 1P3,1




Wumpus World
Possible Models

P1,2 P2,2 P3,1

= Knowledge base

= Nothingin[1,1]
= Breezein|[2,1]

= KB entails a;?

" Yes! No pitin|[1,2]
= \We can add this fact to our KB



Wumpus World
Possible Models

P1,2 P2,2 P3,1

= Knowledge base

= Nothingin[1,1]
= Breezein|[2,1]

= KB entails a,?

= No! We don’t know whether there is a pitin [2,2]



Entailment

Entailment: a |= 3 (“o entails B” or “P follows from o”) iff in every world
where o is true, 3 is also true

" |.e., the a-worlds are a subset of the 3-worlds [models(a.) = models([3)]

Usually we want to know if KB |= query
= models(KB) — models(query)
= In other words

» KB removes all impossible models (any model where KB is false)
= |f B is true in all of these remaining models, we conclude that 3 must be true

Entailment and implication are very much related

= However, entailment relates two sentences, while an implication is itself a sentence
(usually derived via inference to show entailment)



Propositional Logic Models

All Possible Models

A o 0O O O 1 1
1 1 0 O
C o 1 0 1 0 1

Model Symbols

o
o
o




Piazza Poll 3

Does the KB entail query C?

Model Symbols

Knowledge Base

Query

Entailment: o |= 3

“a entails B” iff in every world
where o is true, 3 is also true

All Possible Models

A 0O O 1 1 1 1

B 1 1 0 O 1 1

C O 1 O 1 O 1

A 0O O 1 1 1 1
B=C o 1 1 1 O 1
A=B\vC 1 1 O 1 1 1
C O 1 O 1 O 1




Entailment

How do we implement a logical agent that proves entailment?

" Logic language
" Propositional logic
= First order logic

" Inference algorithms
=" Theorem proving
= Model checking



Simple Model Checking

Same recursion as backtracking Pi=true
O(2") time, linear space
We can do much better!

P,=false

P,=true P,=false

P.,=true

0

=false

KB?
a?

X

<<

<<

11111..1

0000..0 [X]



Piazza Poll 4

Which would you choose?
= DFS
= BFS P,=true

P,=true P,=false

P,=false

P.,=true

P =false
KB? X Vv X XXX N
o J Vv X



Simple Model Checking

function TT-ENTAILS?(KB, a) returns true or false
return TT-CHECK-ALL(KB, a, symbols(KB) U symbols(a), {})

function TT-CHECK-ALL(KB, a, symbols, model) returns true or false
if empty?(symbols) then
if PL-TRUE?(KB, model) then return PL-TRUE?(a, model)
else return true
else
P & first(symbols)
rest & rest(symbols)
return and (TT-CHECK-ALL(KB, a, rest, model U {P = true})
TT-CHECK-ALL(KB, a, rest, model U {P = false }))



Propositional Logic

Check if sentence is true in given model

In other words, does the model satisfy the sentence?

function PL-TRUE?(a.,model) returns true or false
if o is a symbol then return Lookup(a,, model)
if Op(a) = — then return not(PL-TRUE?(Argl(c),model))
if Op(at) = A then return and(PL-TRUE?(Argl(a),model),
PL-TRUE?(Arg2(a),model))
etc.

(Sometimes called “recursion over syntax”)



Inference: Proofs

A proof is a demonstration of entailment between o and f3

Method 1: model-checking

= For every possible world, if o is true make sure that is 3 true too
= OK for propositional logic (finitely many worlds); not easy for first-order logic

Method 2: theorem-proving

= Search for a sequence of proof steps (applications of inference rules) leading from o to 3
= E.g.,, fromP A (P = Q), infer Q by Modus Ponens

Properties
=  Sound algorithm: everything it claims to prove is in fact entailed

= Complete algorithm: every sentence that is entailed can be proved



Simple Theorem Proving: Forward Chaining

Forward chaining applies Modus Ponens to generate new facts:
" Given Xy A Xy AL X, = Yand Xy, X, .., X,
= Infer Y

Forward chaining keeps applying this rule, adding new facts, until
nothing more can be added

Requires KB to contain only definite clauses:
= (Conjunction of symbols) = symbol; or
= A single symbol (note that X is equivalent to True = X)



Forward Chaining Algorithm

function PL-FC-ENTAILS?(KB, q) returns true or false
count < a table, where count|c] is the number of symbols in c’s premise
inferred < a table, where inferred|[s] is initially false for all s

agenda < a queue of symbols, initially symbols known to be true in KB

CLAUSES COUNT INFERRED AGENDA
P=Q 1 A false
LAM=P 2 B false
BAL= M 2 L false
AAP =L 2 M false
ANB= L p) P false
A 0 Q false
0

B



Forward Chaining Example: Proving Q

CLAUSES COUNT INFERRED

P=0Q 1/ 0 A fabse true
LAM=P N0 B fabsetrue
BAL= M 2/ iyo L falsetrue

AAP=L 20 M kasetrue
AAB=L 3/ 0 P fadoe true
A 0 Q faksetrue
B 0

AGENDA

A B % M R Ok &




Forward Chaining Algorithm

function PL-FC-ENTAILS?(KB, q) returns true or false
count < a table, where count|c] is the number of symbols in ¢’s premise
inferred < a table, where inferred|[s] is initially false for all s
agenda < a queue of symbols, initially symbols known to be true in KB

while agenda is not empty do
p < Pop(agenda)
if p=q then return true
if inferred[p] = false then
inferred[p]<true
for each clause c in KB where p is in c.premise do
decrement count[c]
if count[c] = 0 then add c.conclusion to agenda
return false



Properties of forward chaining

Theorem: FC is sound and complete f definite—clause@

Soundness: follows from soundness of Modus Ponens (easy to check)

Completeness proof:

1. FC reaches a fixed point where no new atomic sentences are derived

2. Consider the final inferred table as a model m, assigning true/false to symbols
3. Every clause in the original KB is true in m

Proof: Suppose a clause a;A... Aa, = bis falseinm A fajsetrue
Then a;A... Aqis trueinmand b is false in m B falsetrue
Therefore the algorithm has not reached a fixed point! L faksetrue
4. Hence m is a model of KB M faigetrue
5.1f KB |=q, g is true in every model of KB, including m P falsetrue

Q ofsetrue



Inference Rules

Modus Ponens Notation Alert!
a=>p, «

B

Unit Resolution
avb, —-bVc

avc

General Resolution
a,Vv---vamVvb, -—bvcqiV---Vcy

A V--VamVciV-Vey




Resolution

Algorithm Overview
function PL-RESOLUTION?(KB, «) returns true or false
We want to prove that KB entails «

In other words, we want to prove that we cannot satisfy (KB and not «)
1. Start with a set of CNF clauses, including the KB as well as —«
2. Keep resolving pairs of clauses until
A. You resolve the empty clause
Contradiction found!
KB A =« cannot be satisfied
Return true, KB entails «
B. No new clauses added
Return false, KB does not entail «



Resolution

Example trying to prove —P; ,

Knowledge Base

A

General Resolution
a,Vv---va, Vb, -—bvcqV---Vcy

A V--VamVciVVep

_IPZ,]. V Bl,l

_IBl,l V P1,2 V PZ,].

_|P1,2 V Bl,l

_IB]_']_ _I_IP]_,Z




Resolution

Example trying to prove —P; ,

Knowledge Base

A

General Resolution
a,Vv---vamVvb, -—bVcqiV---Vcp

a,V--Va,VciVe-Vep

_IPZ,]. V Bl,l

_IBl,l V P1,2 V P2’1

_|P1,2 V Bl,l

_'Bl,l P1,2

_'Bl,l VvV P1,2 \ Bl,l

—IBL]_ VvV P2,1 V Bl,l

_IP]_'Z




Resolution

function PL-RESOLUTION?(KB, &) returns true or false
clauses < the set of clauses in the CNF representation of KB A =«
new < {}
loop do
for each pair of clauses (;, Cj in clauses do
resolvents < PL-RESOLVE(C;, Cj)
if resolvents contains the empty clause then
return true
new < new U resolvants
if new C clauses then
return false

clauses < clauses U new



Properties

Forward Chaining is:
= Sound and complete for definite-clause KBs

= Complexity: linear time

Resolution is:
= Sound and complete for any PL KBs!

= Complexity: exponential time ®



