
Warm-up:
Can you write these logic problems as a CSP? 
What are the variables? the domains? the constraints? 
What techniques could you use to solve them?



Announcements
Assignments:
§ P2: Optimization

§ Due Sat 2/22, 10 pm
§ HW5 out AFTER the Midterm

§ Due 2/25, 10 pm
Midterm 1 Exam
§ Mon 2/17, in class
§ Recitation Fri is a review session
§ See Piazza post for details



AI: Representation and Problem Solving
Propositional Logic

Instructors: Pat Virtue & Stephanie Rosenthal
Slide credits: CMU AI, http://ai.berkeley.edu



Warm-up:
Can you write these logic problems as a CSP? 
What are the variables? the domains? the constraints? 
What techniques could you use to solve them?



Warm-up:
Where is the knowledge held in CSPs? What is the goal of a CSP?



Logical Agents
What assignment of variables satisfies the constraints (knowledge base)?
What new knowledge can be inferred from the KB?

Agent
Sensors

Actuators

Environment

Percepts

Actions

?
Knowledge Base

Inference



Logical Agents
So what do we tell our knowledge base (KB)?
§ Facts (sentences)

§ The grass is green
§ The sky is blue

§ Rules (sentences)
§ Eating too much candy makes you sick
§ When you’re sick you don’t go to school

§ Percepts and Actions (sentences)
§ Pat ate too much candy today

What happens when we query the agent?
§ Inference – new sentences created from old

§ Pat is not going to school today



Nonogram Puzzle
Logical Reasoning as a CSP

Binary variable for each square

Constraints:



Wumpus World
Logical Reasoning as a CSP

Variables
§ Bij = breeze felt

§ Sij = stench smelt

§ Pij = pit here

§ Wij = wumpus here

§ G = gold
http://thiagodnf.github.io/wumpus-world-simulator/

http://thiagodnf.github.io/wumpus-world-simulator/


Wumpus World
Constraints on Variables

§ Bij <=> >=1 neighbor is a pit

§ Sij <=> >=1 neighbor is wumpus

§ Pij <=> all NSEW neighbors B=T

§ Wij <=> all NSEW neighbors S=T

§ Gij <=> !Bij and !Sij and glitter  

http://thiagodnf.github.io/wumpus-world-simulator/

http://thiagodnf.github.io/wumpus-world-simulator/


Worlds
We have a set of variables and constraints. 
What are we trying to figure out?

What worlds are possible given the information that we have?



Models

How do we represent possible worlds with models and knowledge bases?
How do we then do inference with these representations?

Assignments of values to variables



Wumpus World
World has 5 locations
[1,1], [2,1], [3,1], [1,2], [2,2]

Knowledge base
Nothing in [1,1]
Breeze in [2,1]

What do we know about the pit locations?
P1,1 = F
P2,1 = F 
Everything else is unknown



Wumpus World
World has 5 locations
[1,1], [2,1], [3,1], [1,2], [2,2]

Knowledge base
Nothing in [1,1]
Breeze in [2,1]

Possible Models for Pits
P1,1=F, P2,1=F, P1,2 ,P2,2 ,P3,1



Wumpus World
World has 5 locations
[1,1], [2,1], [3,1], [1,2], [2,2]

Knowledge base
Nothing in [1,1]
Breeze in [2,1]

Possible Models for Pits
P1,1=F, P2,1=F, P1,2 ,P2,2 ,P3,1

Using Knowledge base rules, infer some of these models aren’t possible
possible worlds that could satisfy this KB are circled



Wumpus World
Possible Models

§ P1,2 P2,2 P3,1

§ Knowledge base

§ Nothing in [1,1]
§ Breeze in [2,1]

§ Query 𝛼":

§ No pit in [1,2]



Wumpus World
Possible Models

§ P1,2 P2,2 P3,1

§ Knowledge base

§ Nothing in [1,1]
§ Breeze in [2,1]

§ Query 𝛼#:

§ No pit in [2,2]



Role of Queries in Logical Agents

In both CSPs and logic, we can determine whether there is a satisfying 
assignment of values to variables

In CSPs, we use arc consistency and forward chaining to eliminate 
single elements of a domain, one at a time

In logic, we can query the KB to determine if every possible assignment 
of variables has particular properties
This allows us to “learn” or infer new information 



Logic Language
Natural language?

Propositional logic
§ Syntax: P Ú (¬Q Ù R);        X1 Û (Raining Þ Sunny)
§ Possible world: {P=true, Q=true, R=false, S=true} or 1101
§ Semantics: a Ù b is true in a world iff is a true and b is true (etc.)

First-order logic
§ Syntax: "x $y P(x,y) Ù ¬Q(Joe,f(x)) Þ f(x)=f(y)
§ Possible world: Objects o1, o2, o3; P holds for <o1,o2>; Q holds for <o3>; f(o1)=o1;

Joe=o3; etc.
§ Semantics: f(s) is true in a world if s=oj and f holds for oj; etc.



Propositional Logic



Piazza Poll 1
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true,
what do we know about 𝐴 ∨ 𝐶?

i. 𝐴 ∨ 𝐶 is guaranteed to be true
ii. 𝐴 ∨ 𝐶 is guaranteed to be false
iii. We don’t have enough information to say anything 

definitive about 𝐴 ∨ 𝐶



Piazza Poll 1
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true, what do we know about 𝐴 ∨ 𝐶?

𝐴 𝐵 𝐶 𝐴 ∨ 𝐵 ¬𝐵 ∨ 𝐶 𝐴 ∨ 𝐶

false false false false true false

false false true false true true

false true false true false false

false true true true true true

true false false true true true

true false true true true true

true true false true false true

true true true true true true



Piazza Poll 1
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true, what do we know about 𝐴 ∨ 𝐶?

𝐴 𝐵 𝐶 𝐴 ∨ 𝐵 ¬𝐵 ∨ 𝐶 𝐴 ∨ 𝐶

false false false false true false

false false true false true true

false true false true false false

false true true true true true

true false false true true true

true false true true true true

true true false true false true

true true true true true true



Piazza Poll 1
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true,
what do we know about 𝐴 ∨ 𝐶?

i. 𝐴 ∨ 𝐶 is guaranteed to be true
ii. 𝐴 ∨ 𝐶 is guaranteed to be false
iii. We don’t have enough information to say anything 

definitive about 𝐴 ∨ 𝐶



Piazza Poll 2
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true,
what do we know about 𝐴?

i. 𝐴 is guaranteed to be true
ii. 𝐴 is guaranteed to be false
iii. We don’t have enough information to say anything 

definitive about 𝐴



Piazza Poll 2
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true, what do we know about 𝐴?

𝐴 𝐵 𝐶 𝐴 ∨ 𝐵 ¬𝐵 ∨ 𝐶 𝐴 ∨ 𝐶

false false false false true false

false false true false true true

false true false true false false

false true true true true true

true false false true true true

true false true true true true

true true false true false true

true true true true true true



Piazza Poll 2
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true,
what do we know about 𝐴?

i. 𝐴 is guaranteed to be true
ii. 𝐴 is guaranteed to be false
iii. We don’t have enough information to say anything 

definitive about 𝐴



Propositional Logic
Symbol:
§ Variable that can be true or false
§ We’ll try to use capital letters, e.g. A, B, P1,2

§ Often include True and False
Operators:
§ ¬ A: not A
§ A Ù B: A and B (conjunction)
§ A Ú B: A or B (disjunction) Note: this is not an “exclusive or”
§ A Þ B: A implies B (implication). If A then B 
§ A Û B: A if and only if B (biconditional)
Sentences



Propositional Logic Syntax
Given: a set of proposition symbols {X1, X2, …, Xn} 
§ (we often add True and False for convenience)

Xi is a sentence
If a is a sentence then ¬a is a sentence
If a and b are sentences then a Ù b is a sentence
If a and b are sentences then a Ú b is a sentence
If a and b are sentences then aÞ b is a sentence
If a and b are sentences then aÛ b is a sentence
And p.s. there are no other sentences!



𝛂 ∨ 𝛃 is inclusive or, not exclusive

Notes on Operators



Truth Tables
𝛂 ∨ 𝛃 is inclusive or, not exclusive

𝛂 𝛃 𝛂 Ù 𝛃
F F F

F T F

T F F

T T T

𝛂 𝛃 𝛂 Ú 𝛃
F F F

F T T

T F T

T T T



𝛂 ∨ 𝛃 is inclusive or, not exclusive

𝛂⇒ 𝛃 is equivalent to  ¬𝛂 ∨ 𝛃
§ Says who?

Notes on Operators



Truth Tables
𝛂 ⇒ 𝛃 is equivalent to  ¬𝛂 ∨ 𝛃

𝛂 𝛃 𝛂 ⇒ 𝛃 ¬𝛂 ¬𝛂 ∨ 𝛃
F F T T T

F T T T T

T F F F F

T T T F T



𝛂 ∨ 𝛃 is inclusive or, not exclusive

𝛂⇒ 𝛃 is equivalent to  ¬𝛂 ∨ 𝛃
§ Says who?

𝛂⇔𝛃 is equivalent to (𝛂⇒ 𝛃) ∧ (𝛃⇒ 𝛂)
§ Prove it!

Notes on Operators



Truth Tables
𝛂⇔ 𝛃 is equivalent to (𝛂 ⇒ 𝛃) ∧ (𝛃 ⇒ 𝛂)

𝛂 𝛃 𝛂⇔ 𝛃 𝛂 ⇒ 𝛃 𝛃 ⇒ 𝛂 (𝛂⇒𝛃) ∧ (𝛃⇒𝛂)

F F T T T T

F T F T F F

T F F F T F

T T T T T T

Equivalence: it’s true in all models. Expressed as a logical sentence:

(𝛂⇔ 𝛃) ⇔ [(𝛂 ⇒ 𝛃) ∧ (𝛃 ⇒ 𝛂)]



Literals
A literal is an atomic sentence:
§ True
§ False
§ Symbol
§ ¬ Symbol



Sentences as Constraints
Adding a sentence to our knowledge base constrains the
number of possible models:

KB: Nothing

P Q R

false false false

false false true

false true false

false true true

true false false

true false true

true true false

true true true

Possible
Models



Sentences as Constraints
Adding a sentence to our knowledge base constrains the
number of possible models:

KB: Nothing
KB: [(P ∧ ¬Q) ∨ (Q ∧ ¬P)] ⇒ R

P Q R

false false false

false false true

false true false

false true true

true false false

true false true

true true false

true true true

Possible
Models



Sentences as Constraints
Adding a sentence to our knowledge base constrains the
number of possible models:

KB: Nothing
KB: [(P ∧ ¬Q) ∨ (Q ∧ ¬P)] ⇒ R
KB: R, [(P ∧ ¬Q) ∨ (Q ∧ ¬P)] ⇒ R

Possible
Models

P Q R

false false false

false false true

false true false

false true true

true false false

true false true

true true false

true true true



Entailment
Entailment: a |= b (“a entails b” or “b follows from a”) iff in every world 
where a is true, b is also true
§ I.e., the  a-worlds are a subset of the b-worlds [models(a) Í models(b)]

Usually we want to know if KB |= query
§ models(KB) Í models(query)
§ In other words
§ KB removes all impossible models (any model where KB is false)
§ If b is true in all of these remaining models, we conclude that b must be true



Nonogram Example

Given the KB of constraints, we can query particular squares to determine if they are 
true or false in all models, or if they are unknown. 



Wumpus World
World has 5 locations
[1,1], [2,1], [3,1], [1,2], [2,2]

Knowledge base
Nothing in [1,1]
Breeze in [2,1]

Possible Models for Pits
P1,1=F, P2,1=F, P1,2 ,P2,2 ,P3,1



Wumpus World
Possible Models

§ P1,2 P2,2 P3,1

§ Knowledge base

§ Nothing in [1,1]
§ Breeze in [2,1]

§ KB entails 𝛼"?

§ Yes! No pit in [1,2]
§ We can add this fact to our KB



Wumpus World
Possible Models

§ P1,2 P2,2 P3,1

§ Knowledge base

§ Nothing in [1,1]
§ Breeze in [2,1]

§ KB entails 𝛼#?

§ No! We don’t know whether there is a pit in [2,2]



Entailment
Entailment: a |= b (“a entails b” or “b follows from a”) iff in every world 
where a is true, b is also true
§ I.e., the  a-worlds are a subset of the b-worlds [models(a) Í models(b)]

Usually we want to know if KB |= query
§ models(KB) Í models(query)
§ In other words
§ KB removes all impossible models (any model where KB is false)
§ If b is true in all of these remaining models, we conclude that b must be true

Entailment and implication are very much related
§ However, entailment relates two sentences, while an implication is itself a sentence 

(usually derived via inference to show entailment)



Propositional Logic Models

A 0 0 0 0 1 1 1 1
B 0 0 1 1 0 0 1 1
C 0 1 0 1 0 1 0 1

All Possible Models

Model Symbols



Piazza Poll 3
Does the KB entail query C?

A 0 0 0 0 1 1 1 1
B 0 0 1 1 0 0 1 1
C 0 1 0 1 0 1 0 1

A 0 0 0 0 1 1 1 1
BÞC 1 1 0 1 1 1 0 1

AÞBÚC 1 1 1 1 0 1 1 1

C 0 1 0 1 0 1 0 1

All Possible Models

Model Symbols

Knowledge Base

Query

Entailment: a |= b
“a entails b” iff in every world 
where a is true, b is also true



Entailment
How do we implement a logical agent that proves entailment?

§ Logic language
§ Propositional logic
§ First order logic

§ Inference algorithms
§ Theorem proving
§ Model checking



Simple Model Checking

Same recursion as backtracking
O(2n) time, linear space
We can do much better!

P1=true P1=false

P2=true P2=false

Pn=falsePn=true
11

11
1…

1

00
00

…
0

KB?
α?



Piazza Poll 4
Which would you choose?
§ DFS
§ BFS

P1=true P1=false

P2=true P2=false

Pn=falsePn=true
11

11
1…

1

00
00

…
0

KB?
α?



Simple Model Checking
function TT-ENTAILS?(KB, α) returns true or false

return TT-CHECK-ALL(KB, α, symbols(KB) U symbols(α), {}) 

function TT-CHECK-ALL(KB, α, symbols, model) returns true or false 
if empty?(symbols) then

if PL-TRUE?(KB, model) then return PL-TRUE?(α, model) 
else return true

else
P ← first(symbols)
rest ← rest(symbols)
return and (TT-CHECK-ALL(KB, α, rest, model ∪ {P = true}) 

TT-CHECK-ALL(KB, α, rest, model ∪ {P = false })) 



Propositional Logic

function PL-TRUE?(a,model) returns true or false
if a is a symbol then return Lookup(a, model)
if Op(a) = ¬ then return not(PL-TRUE?(Arg1(a),model))
if Op(a) = Ù then return and(PL-TRUE?(Arg1(a),model), 

PL-TRUE?(Arg2(a),model))
etc.

(Sometimes called “recursion over syntax”)

Check if sentence is true in given model
In other words, does the model satisfy the sentence?



Inference: Proofs
A proof is a demonstration of entailment between a and b
Method 1: model-checking
§ For every possible world, if a is true make sure that is b true too
§ OK for propositional logic (finitely many worlds); not easy for first-order logic

Method 2: theorem-proving
§ Search for a sequence of proof steps (applications of inference rules) leading from a to b
§ E.g., from P Ù (P Þ Q), infer Q by Modus Ponens

Properties
§ Sound algorithm: everything it claims to prove is in fact entailed
§ Complete algorithm: every sentence that is entailed can be proved



Simple Theorem Proving: Forward Chaining
Forward chaining applies Modus Ponens to generate new facts:
§ Given X1 Ù X2 Ù … Xn Þ Y and X1, X2, …, Xn

§ Infer Y

Forward chaining keeps applying this rule, adding new facts, until 
nothing more can be added

Requires KB to contain only definite clauses: 
§ (Conjunction of symbols) Þ symbol; or
§ A single symbol (note that X is equivalent to True  Þ X)



Forward Chaining Algorithm
function PL-FC-ENTAILS?(KB, q) returns true or false

count ← a table, where count[c] is the number of symbols in c’s premise
inferred ← a table, where inferred[s] is initially false for all s
agenda ← a queue of symbols, initially symbols known to be true in KB

P Þ Q
L Ù M Þ P
B Ù L Þ M
A Ù P Þ L
A Ù B Þ L
A
B 

1
2
2
2
2
0
0 

CLAUSES AGENDACOUNT
A false
B false
L false
M false
P false
Q false

INFERRED



Q

P

M

L

BA

Forward Chaining Example: Proving Q

P Þ Q
L Ù M Þ P
B Ù L Þ M
A Ù P Þ L
A Ù B Þ L
A
B 

1
2
2
2
2
0
0 

A false
B false
L false
M false
P false
Q false

CLAUSES

AGENDA
A   B

INFERREDCOUNT

Lx

xxxx true

// 1

// 1

x

xxxx true

// 1

// 0

x

xxxx true
// 1

// 0

Mx

xxxx true

// 0

Px

xxxx true

// 0

// 0

L Qx x

xxxx true



Forward Chaining Algorithm
function PL-FC-ENTAILS?(KB, q) returns true or false

count ← a table, where count[c] is the number of symbols in c’s premise
inferred ← a table, where inferred[s] is initially false for all s
agenda ← a queue of symbols, initially symbols known to be true in KB

while agenda is not empty do
p ← Pop(agenda)
if p = q then return true 
if inferred[p] = false then

inferred[p]←true
for each clause c in KB where p is in c.premise do

decrement count[c] 
if count[c] = 0 then add c.conclusion to agenda

return false



Properties of forward chaining
Theorem: FC is sound and complete for definite-clause KBs
Soundness: follows from soundness of Modus Ponens (easy to check)
Completeness proof:

1. FC reaches a fixed point where no new atomic sentences are derived 
2. Consider the final inferred table as a model m, assigning true/false to symbols 
3. Every clause in the original KB is true in m

Proof: Suppose a clause a1Ù... Ùak Þ b is false in m
Then a1Ù... Ùak is true in m and b is false in m
Therefore the algorithm has not reached a fixed point! 

4. Hence m is a model of KB
5. If KB |= q, q is true in every model of KB, including m

A false
B false
L false
M false
P false
Q false

xxxx true

xxxx true

xxxx true
xxxx true

xxxx true
xxxx true



Inference Rules 
Modus Ponens

/⇒0, /
0

Unit Resolution
2∨3, ¬3∨4

2∨4

General Resolution
25∨⋯∨27∨3, ¬3∨45∨⋯∨48

25∨⋯∨27∨45∨⋯∨48

Notation Alert!



Resolution
Algorithm Overview
function PL-RESOLUTION?(KB, a) returns true or false

We want to prove that KB entails a
In other words, we want to prove that we cannot satisfy (KB and not a)
1. Start with a set of CNF clauses, including the KB as well as ¬a
2. Keep resolving pairs of clauses until

A. You resolve the empty clause
Contradiction found!
KB ⋀¬𝛼 cannot be satisfied
Return true, KB entails a

B. No new clauses added
Return false, KB does not entail a



Resolution
Example trying to prove ¬𝑃",#

¬𝑃#," ∨ 𝐵"," ¬𝐵"," ∨ 𝑃",# ∨ 𝑃#," ¬𝑃",# ∨ 𝐵"," ¬𝐵"," ¬¬𝑃",#

Knowledge Base

General Resolution
25∨⋯∨27∨3, ¬3∨45∨⋯∨48

25∨⋯∨27∨45∨⋯∨48



Resolution
Example trying to prove ¬𝑃",#

¬𝑃#," ∨ 𝐵"," ¬𝐵"," ∨ 𝑃",# ∨ 𝑃#," ¬𝑃",# ∨ 𝐵"," ¬𝐵"," 𝑃",#

Knowledge Base

General Resolution
25∨⋯∨27∨3, ¬3∨45∨⋯∨48

25∨⋯∨27∨45∨⋯∨48

¬𝐵"," ∨ 𝑃",# ∨ 𝐵"," 𝑃",# ∨ 𝑃#," ∨ ¬𝑃#," ¬𝐵"," ∨ 𝑃#," ∨ 𝐵"," 𝑃",# ∨ 𝑃#," ∨ ¬𝑃",# ¬𝑃#," ¬𝑃",#



Resolution
function PL-RESOLUTION?(KB, a) returns true or false

clauses ← the set of clauses in the CNF representation of KB ⋀¬𝛼
new ← { }
loop do

for each pair of clauses 𝐶<, 𝐶= in clauses do

resolvents ← PL-RESOLVE(𝐶<, 𝐶=)
if resolvents contains the empty clause then

return true
new ← new ∪ resolvants

if new ⊆ clauses then
return false

clauses ← clauses ∪ new



Properties
Forward Chaining is:
§ Sound and complete for definite-clause KBs
§ Complexity: linear time 

Resolution is:
§ Sound and complete for any PL KBs!
§ Complexity: exponential time L


