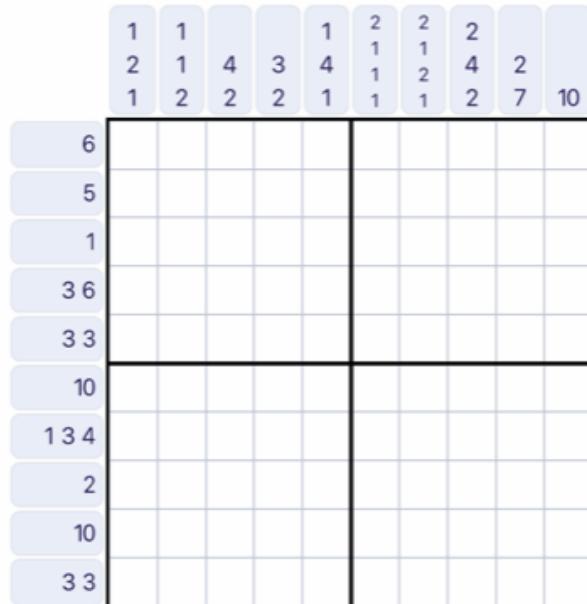
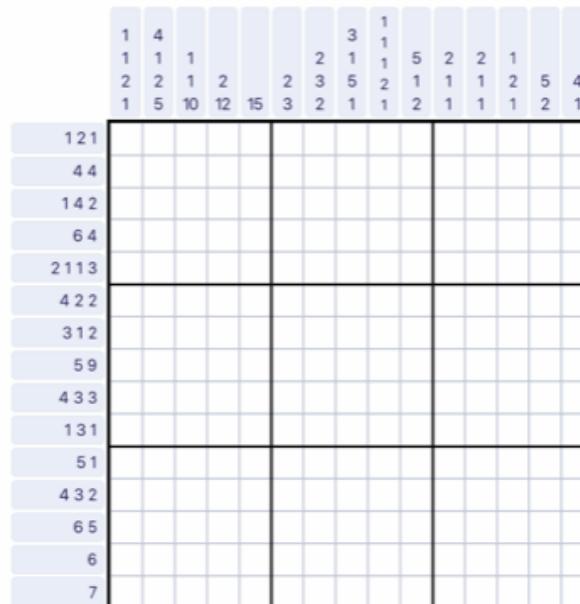


Warm-up:

Can you write these logic problems as a CSP?

What are the variables? the domains? the constraints?

What techniques could you use to solve them?



Announcements

Assignments:

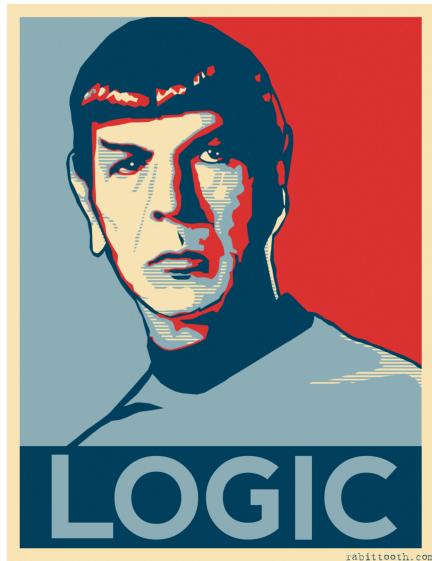
- P2: Optimization
 - Due Sat 2/22, 10 pm
- HW5 out AFTER the Midterm
 - Due 2/25, 10 pm

Midterm 1 Exam

- Mon 2/17, in class
- Recitation Fri is a review session
- See Piazza post for details

AI: Representation and Problem Solving

Propositional Logic



Instructors: Pat Virtue & Stephanie Rosenthal

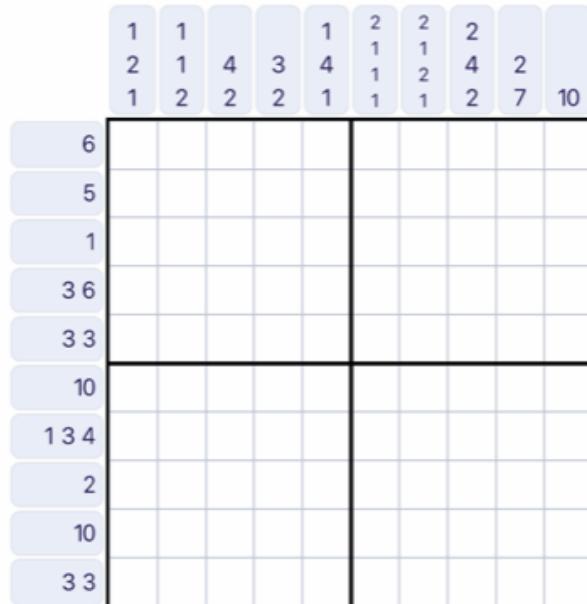
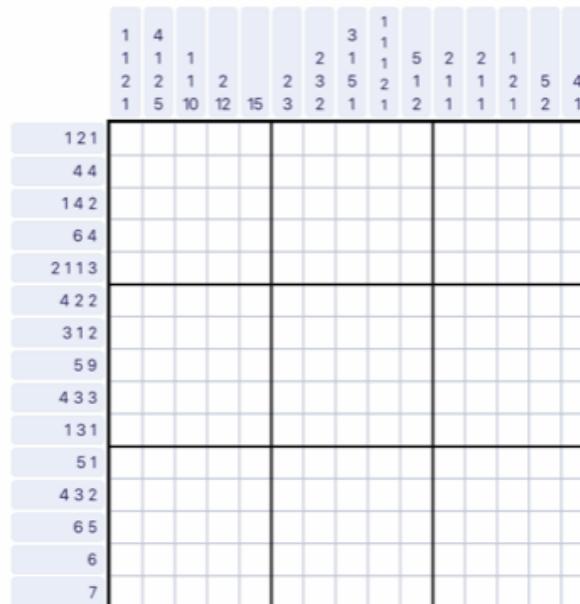
Slide credits: CMU AI, <http://ai.berkeley.edu>

Warm-up:

Can you write these logic problems as a CSP?

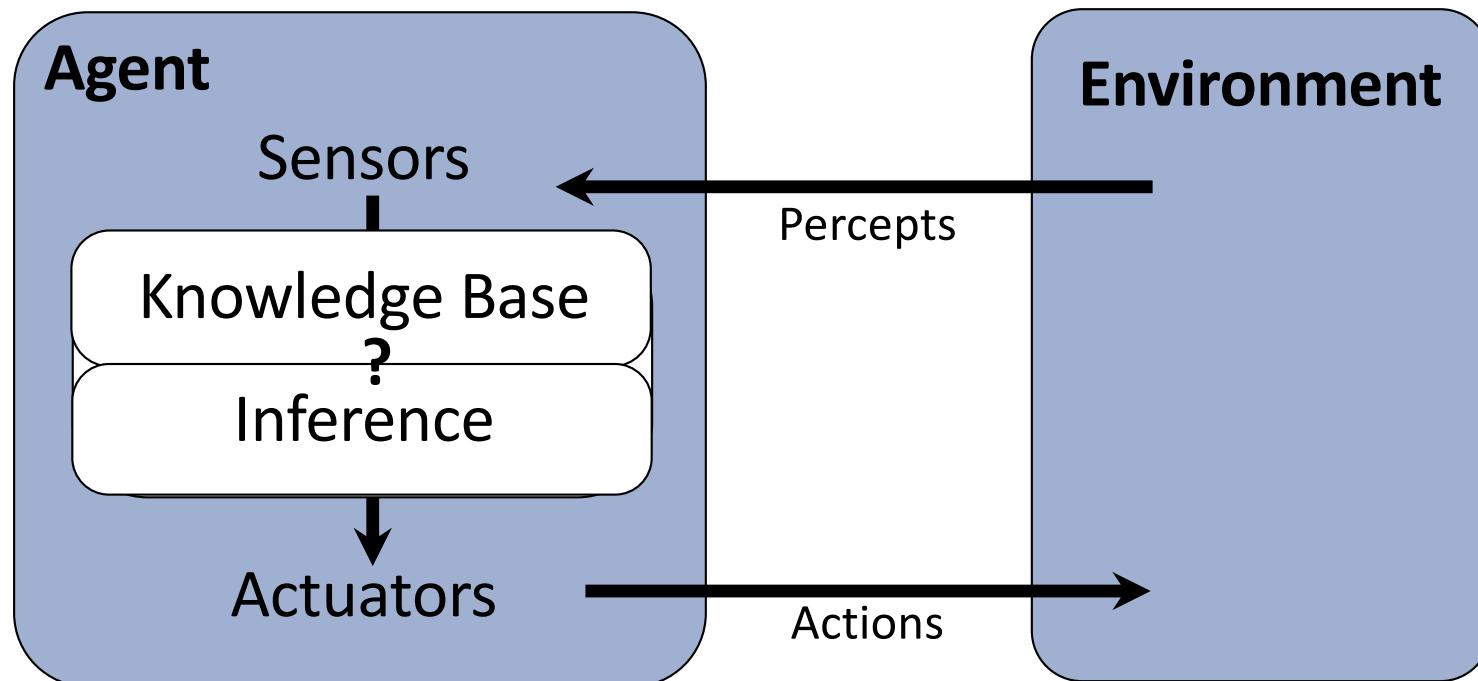
What are the variables? the domains? the constraints?

What techniques could you use to solve them?



Logical Agents

What assignment of variables satisfies the constraints (knowledge base)?
What new knowledge can be inferred from the KB?



Logical Agents

So what do we tell our knowledge base (KB)?

- Facts (sentences)
 - The grass is green
 - The sky is blue
- Rules (sentences)
 - Eating too much candy makes you sick
 - When you're sick you don't go to school
- Percepts and Actions (sentences)
 - Pat ate too much candy today

What happens when we query the agent?

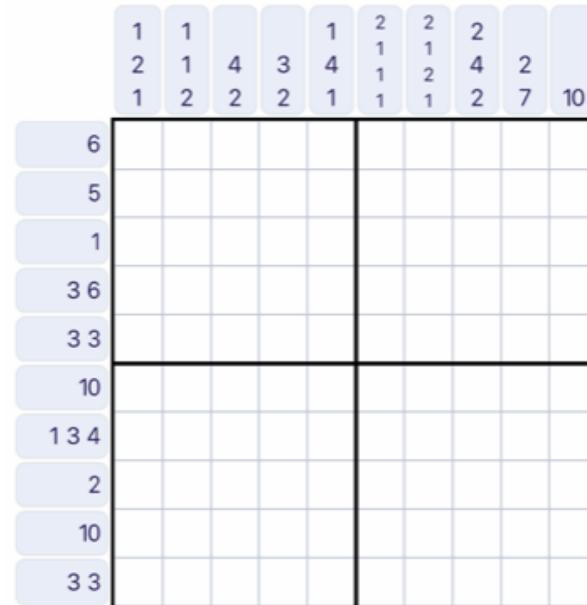
- Inference – new sentences created from old
 - Pat is not going to school today

Nonogram Puzzle

Logical Reasoning as a CSP

Binary variable for each square

Constraints:

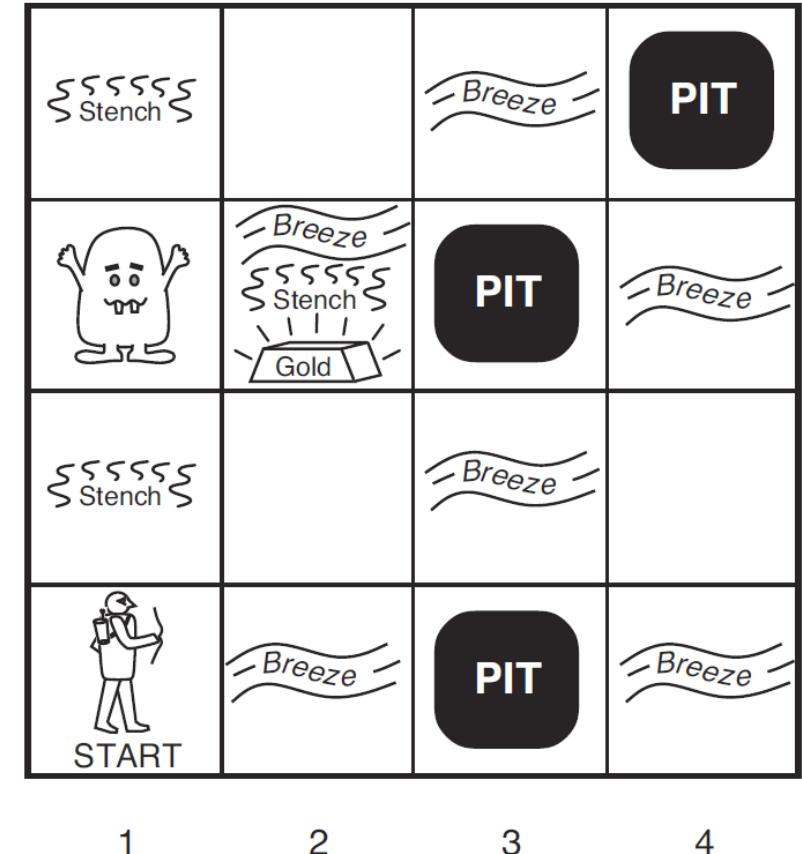


Wumpus World

Logical Reasoning as a CSP

Variables

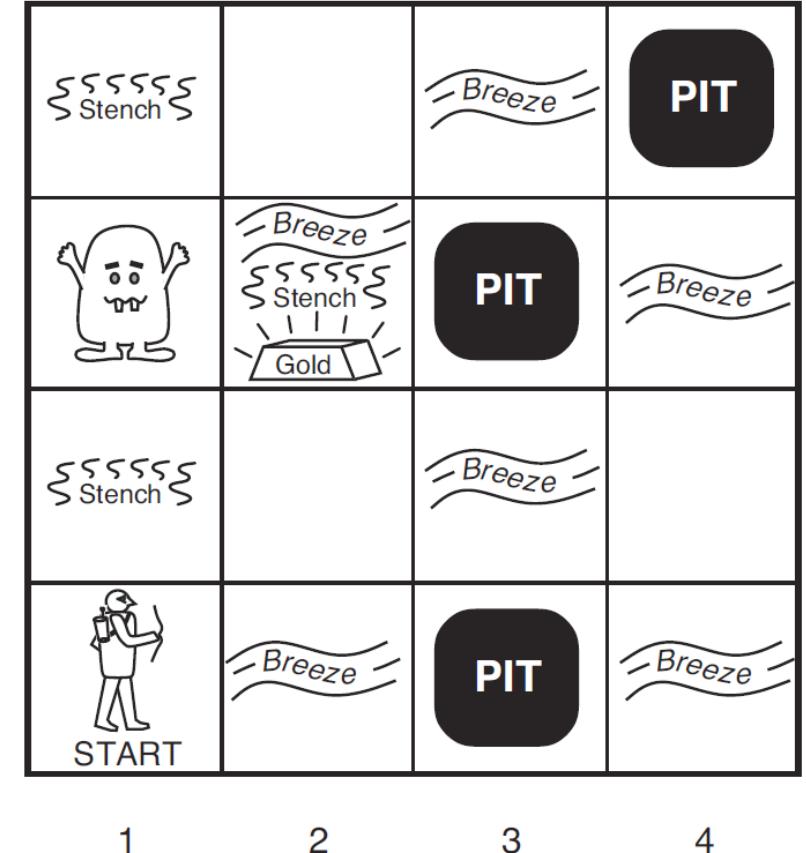
- B_{ij} = breeze felt
- S_{ij} = stench smelt
- P_{ij} = pit here
- W_{ij} = wumpus here
- G = gold



Wumpus World

Constraints on Variables

- $B_{ij} \Leftrightarrow \geq 1$ neighbor is a pit
- $S_{ij} \Leftrightarrow \geq 1$ neighbor is wumpus
- $P_{ij} \Leftrightarrow$ all NSEW neighbors $B=T$
- $W_{ij} \Leftrightarrow$ all NSEW neighbors $S=T$
- $G_{ij} \Leftrightarrow \neg B_{ij}$ and $\neg S_{ij}$ and glitter



Worlds

We have a set of variables and constraints.

What are we trying to figure out?

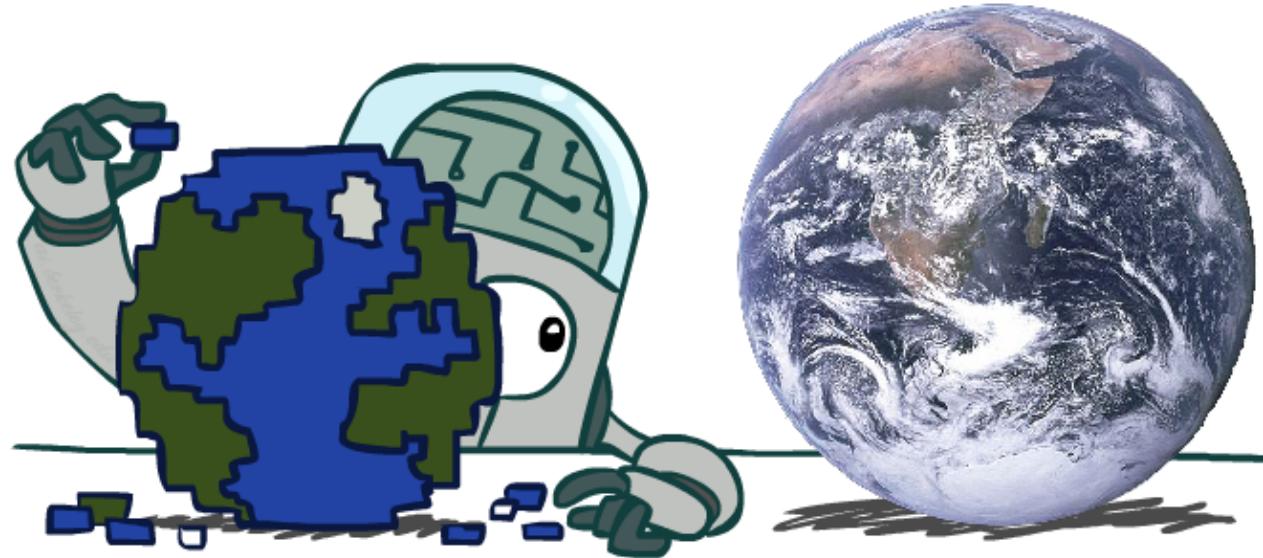
What worlds are possible given the information that we have?

1	1			1	2	2	2	
2	1	4	3	4	1	1	4	2
1	2	2	2	1	1	1	2	7
6								10
5								
1								
3	6							
3	3							
10								
1	3	4						
2								
10								
3	3							

4	Stench		Breeze	
3		Breeze	Stench	Breeze
2	Stench			
1	START			Breeze

Models

Assignments of values to variables



How do we represent possible worlds with models and knowledge bases?

How do we then do inference with these representations?

Wumpus World

World has 5 locations

[1,1], [2,1], [3,1], [1,2], [2,2]

Knowledge base

Nothing in [1,1]

Breeze in [2,1]

What do we know about the pit locations?

$P_{1,1} = F$

$P_{2,1} = F$

Everything else is unknown

Wumpus World

World has 5 locations

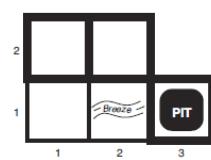
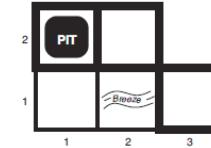
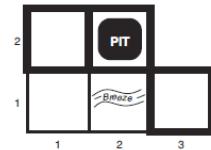
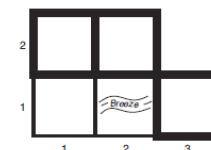
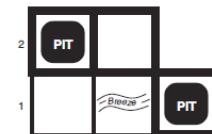
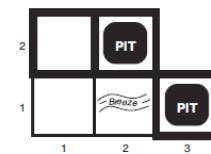
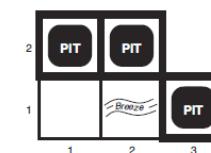
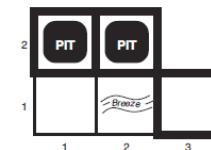
[1,1], [2,1], [3,1], [1,2], [2,2]

Knowledge base

Nothing in [1,1]
Breeze in [2,1]

Possible Models for Pits

$P_{1,1}=F$, $P_{2,1}=F$, $P_{1,2}, P_{2,2}, P_{3,1}$



Wumpus World

World has 5 locations

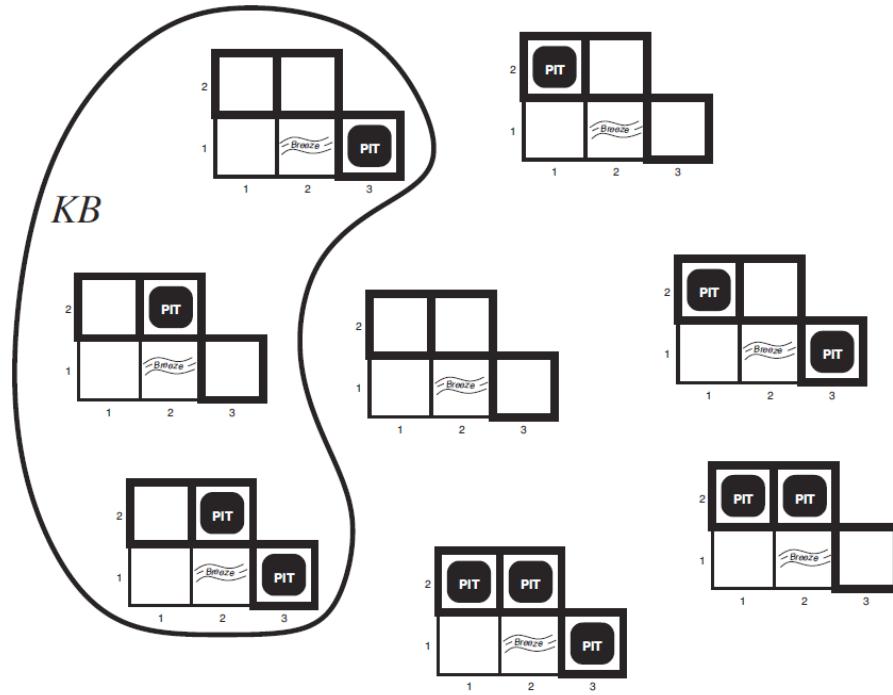
[1,1], [2,1], [3,1], [1,2], [2,2]

Knowledge base

Nothing in [1,1]
Breeze in [2,1]

Possible Models for Pits

$P_{1,1}=F$, $P_{2,1}=F$, $P_{1,2}, P_{2,2}, P_{3,1}$

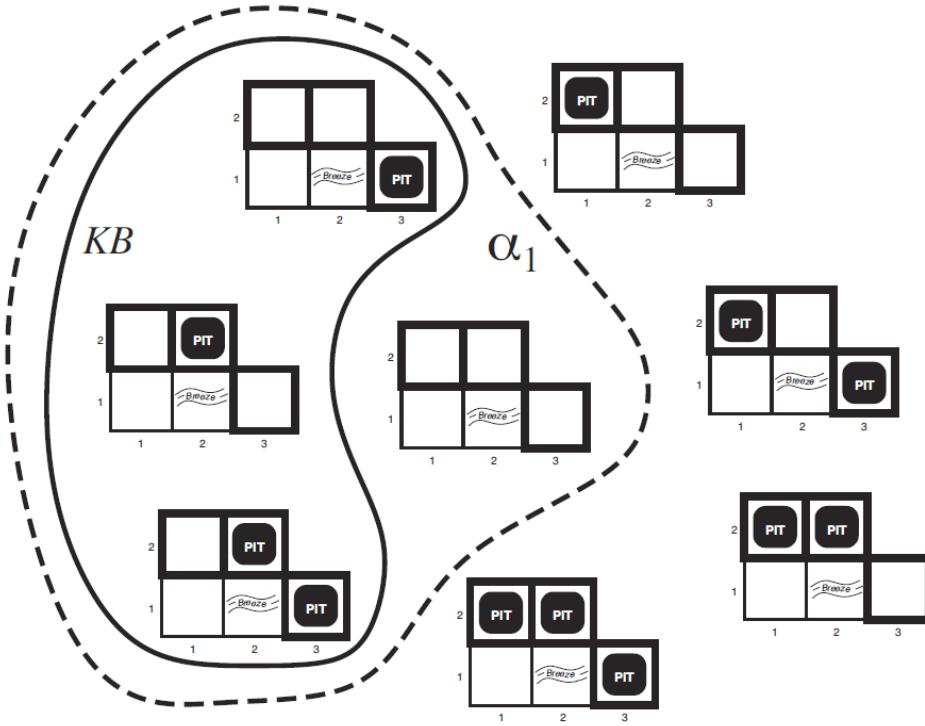


Using Knowledge base rules, infer some of these models aren't possible
possible worlds that could satisfy this KB are circled

Wumpus World

Possible Models

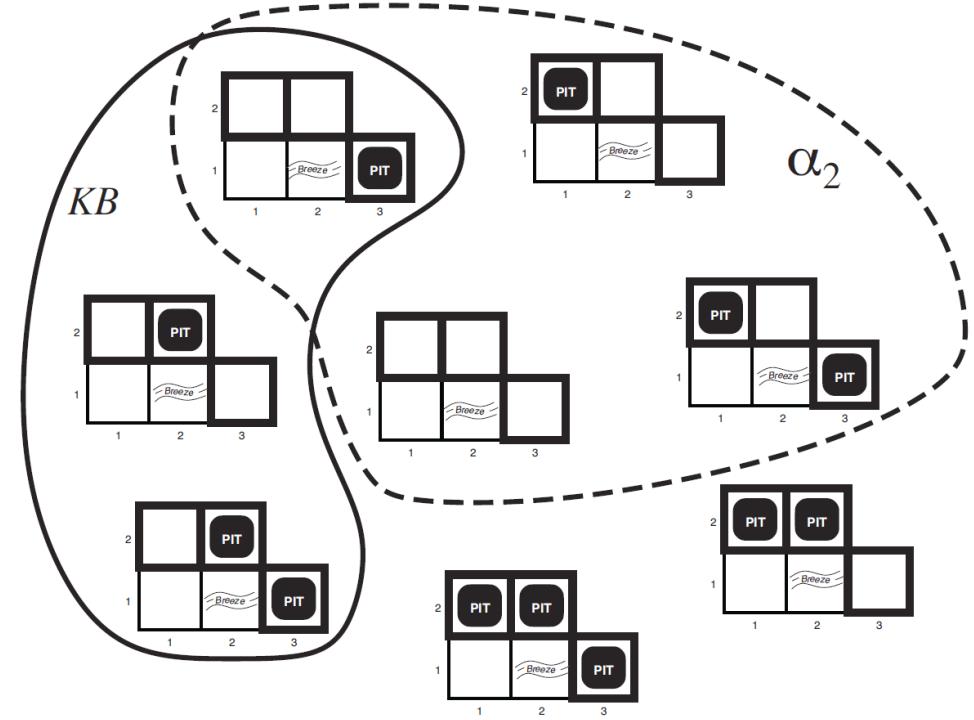
- $P_{1,2} P_{2,2} P_{3,1}$
- Knowledge base
 - Nothing in [1,1]
 - Breeze in [2,1]
- Query α_1 :
 - No pit in [1,2]



Wumpus World

Possible Models

- $P_{1,2} P_{2,2} P_{3,1}$
- Knowledge base
 - Nothing in [1,1]
 - Breeze in [2,1]
- Query α_2 :
 - No pit in [2,2]



Role of Queries in Logical Agents

In both CSPs and logic, we can determine whether there is a satisfying assignment of values to variables

In CSPs, we use arc consistency and forward chaining to eliminate single elements of a domain, one at a time

In logic, we can **query** the KB to determine if every possible assignment of variables has particular properties

This allows us to “learn” or infer new information

Logic Language

Natural language?

Propositional logic

- Syntax: $P \vee (\neg Q \wedge R)$; $X_1 \Leftrightarrow (\text{Raining} \Rightarrow \text{Sunny})$
- Possible world: $\{P=\text{true}, Q=\text{true}, R=\text{false}, S=\text{true}\}$ or 1101
- Semantics: $\alpha \wedge \beta$ is true in a world iff α is true and β is true (etc.)

First-order logic

- Syntax: $\forall x \exists y P(x,y) \wedge \neg Q(\text{Joe}, f(x)) \Rightarrow f(x)=f(y)$
- Possible world: Objects o_1, o_2, o_3 ; P holds for $\langle o_1, o_2 \rangle$; Q holds for $\langle o_3 \rangle$; $f(o_1)=o_1$; $\text{Joe}=o_3$; etc.
- Semantics: $\phi(\sigma)$ is true in a world if $\sigma=o_j$ and ϕ holds for o_j ; etc.

Propositional Logic

Piazza Poll 1

If we know that $A \vee B$ and $\neg B \vee C$ are true,
what do we know about $A \vee C$?

- i. $A \vee C$ is guaranteed to be true
- ii. $A \vee C$ is guaranteed to be false
- iii. We don't have enough information to say anything definitive about $A \vee C$

Piazza Poll 1

If we know that $A \vee B$ and $\neg B \vee C$ are true, what do we know about $A \vee C$?

A	B	C	$A \vee B$	$\neg B \vee C$	$A \vee C$
false	false	false	false	true	false
false	false	true	false	true	true
false	true	false	true	false	false
false	true	true	true	true	true
true	false	false	true	true	true
true	false	true	true	true	true
true	true	false	true	false	true
true	true	true	true	true	true

Piazza Poll 1

If we know that $A \vee B$ and $\neg B \vee C$ are true, what do we know about $A \vee C$?

A	B	C	$A \vee B$	$\neg B \vee C$	$A \vee C$
false	false	false	false	true	false
false	false	true	false	true	true
false	true	false	true	false	false
false	true	true	true	true	true
true	false	false	true	true	true
true	false	true	true	true	true
true	true	false	true	false	true
true	true	true	true	true	true

Piazza Poll 1

If we know that $A \vee B$ and $\neg B \vee C$ are true,
what do we know about $A \vee C$?

- i. $A \vee C$ is guaranteed to be true
- ii. $A \vee C$ is guaranteed to be false
- iii. We don't have enough information to say anything definitive about $A \vee C$

Piazza Poll 2

If we know that $A \vee B$ and $\neg B \vee C$ are true,
what do we know about A ?

- i. A is guaranteed to be true
- ii. A is guaranteed to be false
- iii. We don't have enough information to say anything definitive about A

Piazza Poll 2

If we know that $A \vee B$ and $\neg B \vee C$ are true, what do we know about A ?

A	B	C	$A \vee B$	$\neg B \vee C$	$A \vee C$
false	false	false	false	true	false
false	false	true	false	true	true
false	true	false	true	false	false
false	true	true	true	true	true
true	false	false	true	true	true
true	false	true	true	true	true
true	true	false	true	false	true
true	true	true	true	true	true

Piazza Poll 2

If we know that $A \vee B$ and $\neg B \vee C$ are true,
what do we know about A ?

- i. A is guaranteed to be true
- ii. A is guaranteed to be false
- iii. We don't have enough information to say anything definitive about A

Propositional Logic

Symbol:

- Variable that can be true or false
- We'll try to use capital letters, e.g. A, B, $P_{1,2}$
- Often include True and False

Operators:

- $\neg A$: not A
- $A \wedge B$: A and B (conjunction)
- $A \vee B$: A or B (disjunction) Note: this is not an “exclusive or”
- $A \Rightarrow B$: A implies B (implication). If A then B
- $A \Leftrightarrow B$: A if and only if B (biconditional)

Sentences

Propositional Logic Syntax

Given: a set of proposition symbols $\{X_1, X_2, \dots, X_n\}$

- (we often add True and False for convenience)

X_i is a sentence

If α is a sentence then $\neg\alpha$ is a sentence

If α and β are sentences then $\alpha \wedge \beta$ is a sentence

If α and β are sentences then $\alpha \vee \beta$ is a sentence

If α and β are sentences then $\alpha \Rightarrow \beta$ is a sentence

If α and β are sentences then $\alpha \Leftrightarrow \beta$ is a sentence

And p.s. there are no other sentences!

Notes on Operators

$\alpha \vee \beta$ is inclusive or, not exclusive

Truth Tables

$\alpha \vee \beta$ is inclusive or, not exclusive

α	β	$\alpha \wedge \beta$
F	F	F
F	T	F
T	F	F
T	T	T

α	β	$\alpha \vee \beta$
F	F	F
F	T	T
T	F	T
T	T	T

Notes on Operators

$\alpha \vee \beta$ is inclusive or, not exclusive

$\alpha \Rightarrow \beta$ is equivalent to $\neg\alpha \vee \beta$

- Says who?

Truth Tables

$\alpha \Rightarrow \beta$ is equivalent to $\neg\alpha \vee \beta$

α	β	$\alpha \Rightarrow \beta$	$\neg\alpha$	$\neg\alpha \vee \beta$
F	F	T	T	T
F	T	T	T	T
T	F	F	F	F
T	T	T	F	T

Notes on Operators

$\alpha \vee \beta$ is inclusive or, not exclusive

$\alpha \Rightarrow \beta$ is equivalent to $\neg\alpha \vee \beta$

- Says who?

$\alpha \Leftrightarrow \beta$ is equivalent to $(\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)$

- Prove it!

Truth Tables

$\alpha \Leftrightarrow \beta$ is equivalent to $(\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)$

α	β	$\alpha \Leftrightarrow \beta$	$\alpha \Rightarrow \beta$	$\beta \Rightarrow \alpha$	$(\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)$
F	F	T	T	T	T
F	T	F	T	F	F
T	F	F	F	T	F
T	T	T	T	T	T

Equivalence: it's true in all models. Expressed as a logical sentence:

$$(\alpha \Leftrightarrow \beta) \Leftrightarrow [(\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)]$$

Literals

A *literal* is an atomic sentence:

- True
- False
- Symbol
- \neg Symbol

Sentences as Constraints

Adding a sentence to our knowledge base constrains the number of possible models:

KB: Nothing

Possible Models

P	Q	R
false	false	false
false	false	true
false	true	false
false	true	true
true	false	false
true	false	true
true	true	false
true	true	true

Sentences as Constraints

Adding a sentence to our knowledge base constrains the number of possible models:

KB: Nothing

KB: $[(P \wedge \neg Q) \vee (Q \wedge \neg P)] \Rightarrow R$

Possible Models

P	Q	R
false	false	false
false	false	true
false	true	false
false	true	true
true	false	false
true	false	true
true	true	false
true	true	true

Sentences as Constraints

Adding a sentence to our knowledge base constrains the number of possible models:

KB: Nothing

KB: $[(P \wedge \neg Q) \vee (Q \wedge \neg P)] \Rightarrow R$

KB: **R**, $[(P \wedge \neg Q) \vee (Q \wedge \neg P)] \Rightarrow R$

Possible Models

P	Q	R
false	false	false
false	false	true
false	true	false
false	true	true
true	false	false
true	false	true
true	true	false
true	true	true

Entailment

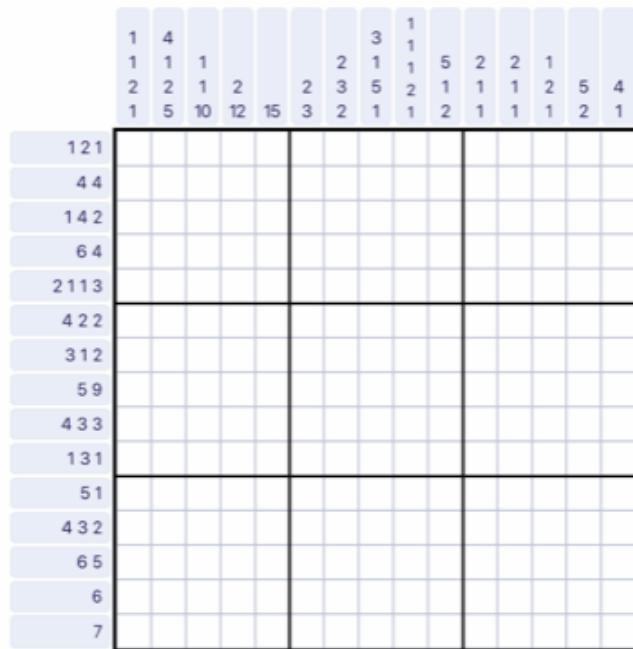
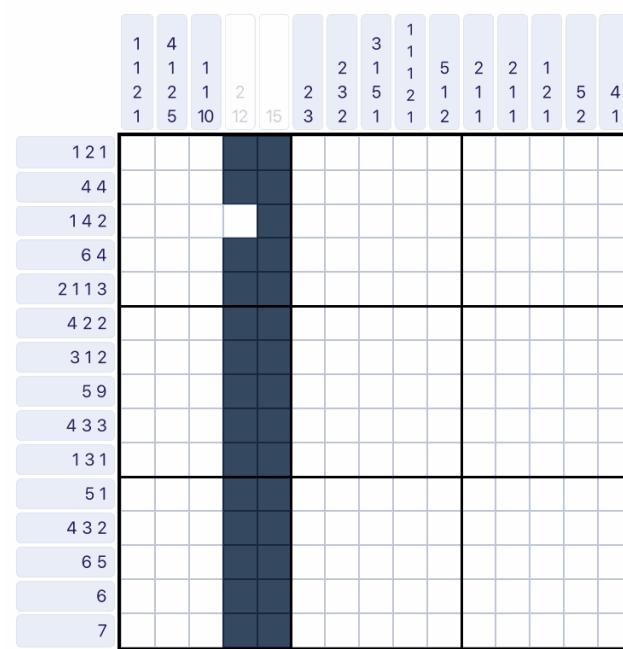
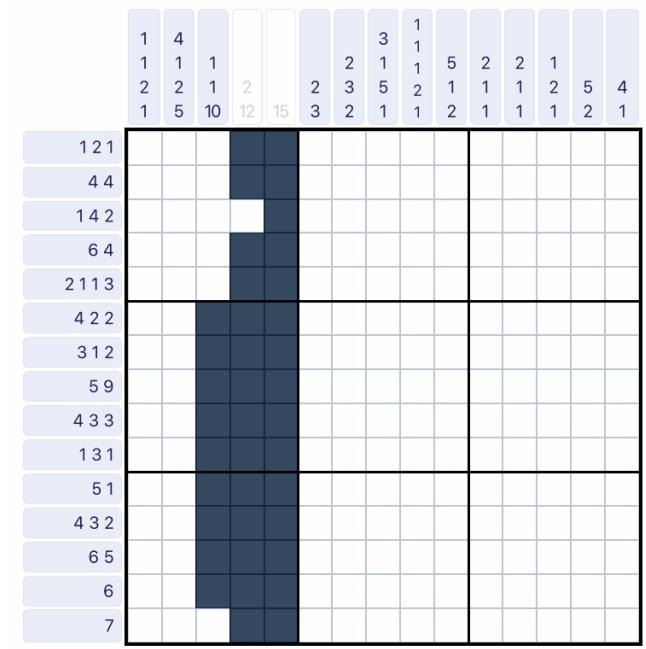
Entailment: $\alpha \models \beta$ (“ α entails β ” or “ β follows from α ”) iff in every world where α is true, β is also true

- I.e., the α -worlds are a subset of the β -worlds [$\text{models}(\alpha) \subseteq \text{models}(\beta)$]

Usually we want to know if $KB \models \text{query}$

- $\text{models}(KB) \subseteq \text{models}(\text{query})$
- In other words
 - KB removes all impossible models (any model where KB is false)
 - If β is true in all of these remaining models, we conclude that β must be true

Nonogram Example



Given the KB of constraints, we can query particular squares to determine if they are true or false in all models, or if they are unknown.

Wumpus World

World has 5 locations

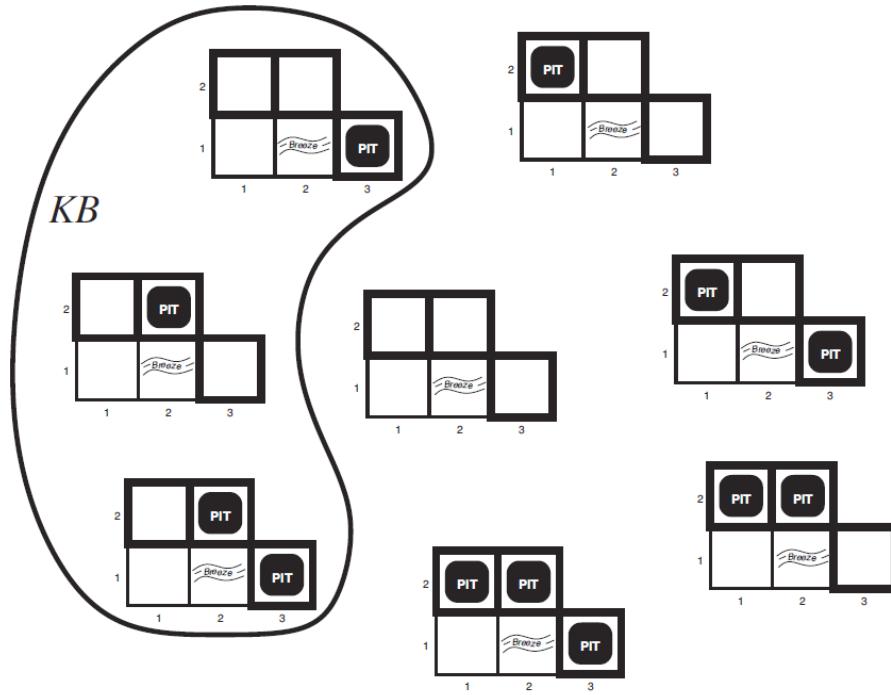
[1,1], [2,1], [3,1], [1,2], [2,2]

Knowledge base

Nothing in [1,1]
Breeze in [2,1]

Possible Models for Pits

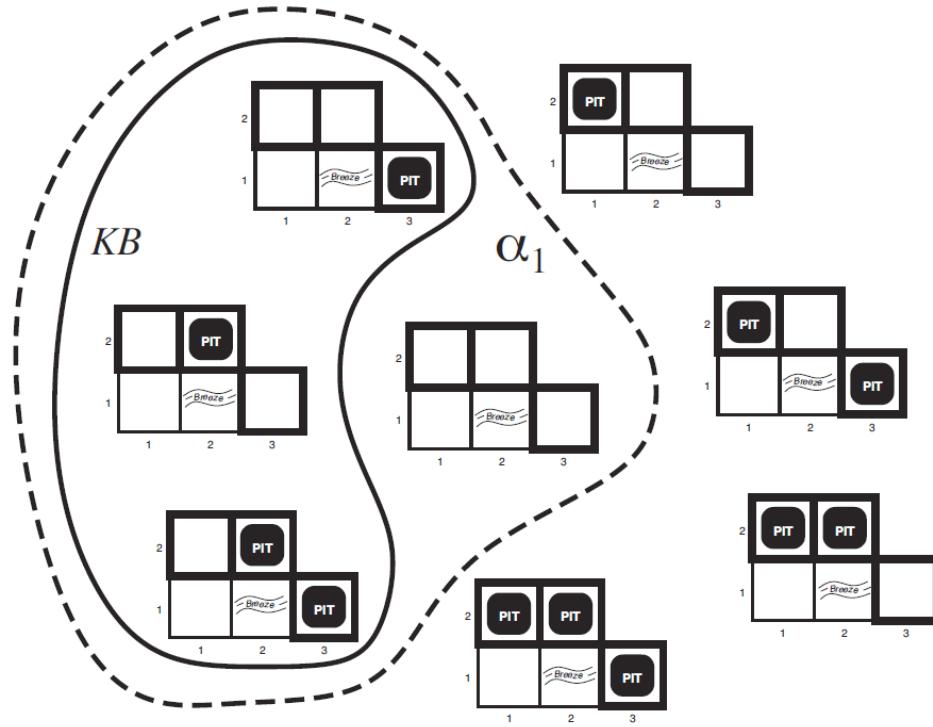
$P_{1,1}=F$, $P_{2,1}=F$, $P_{1,2}, P_{2,2}, P_{3,1}$



Wumpus World

Possible Models

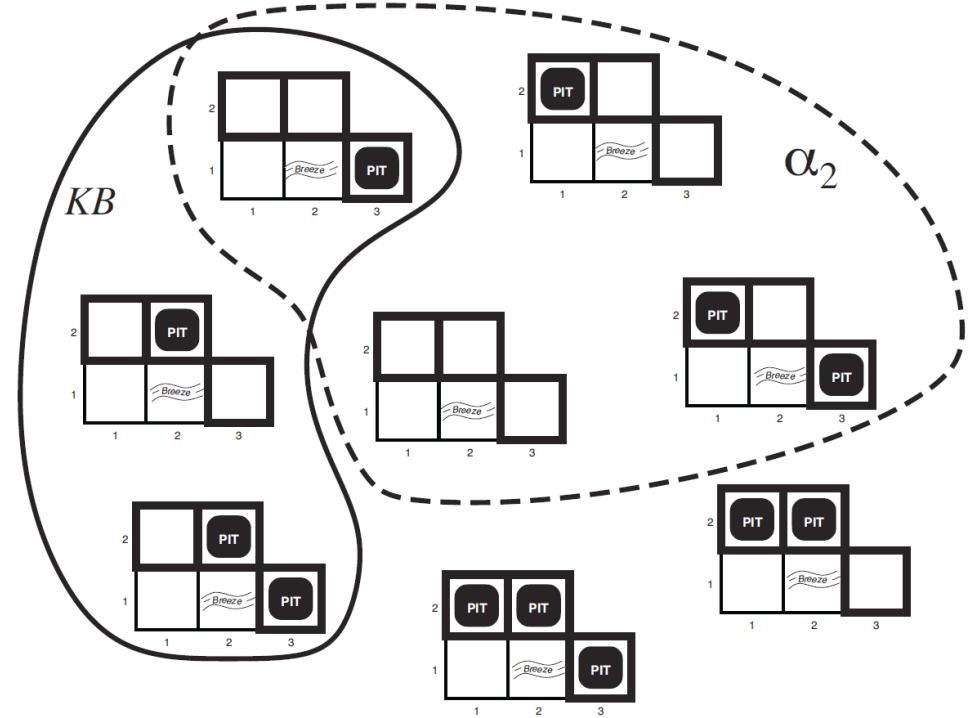
- $P_{1,2} P_{2,2} P_{3,1}$
- Knowledge base
 - Nothing in [1,1]
 - Breeze in [2,1]
- KB entails α_1 ?
 - Yes! No pit in [1,2]
 - We can add this fact to our KB



Wumpus World

Possible Models

- $P_{1,2} P_{2,2} P_{3,1}$
- Knowledge base
 - Nothing in [1,1]
 - Breeze in [2,1]
- KB entails α_2 ?
 - No! We don't know whether there is a pit in [2,2]



Entailment

Entailment: $\alpha \models \beta$ (“ α entails β ” or “ β follows from α ”) iff in every world where α is true, β is also true

- I.e., the α -worlds are a subset of the β -worlds [$\text{models}(\alpha) \subseteq \text{models}(\beta)$]

Usually we want to know if $KB \models \text{query}$

- $\text{models}(KB) \subseteq \text{models}(\text{query})$
- In other words
 - KB removes all impossible models (any model where KB is false)
 - If β is true in all of these remaining models, we conclude that β must be true

Entailment and implication are very much related

- However, entailment relates two sentences, while an implication is itself a sentence (usually derived via inference to show entailment)

Propositional Logic Models

Model Symbols

All Possible Models

A	0	0	0	0	1	1	1	1
B	0	0	1	1	0	0	1	1
C	0	1	0	1	0	1	0	1

Piazza Poll 3

Does the KB entail query C?

Entailment: $\alpha \models \beta$

“ α entails β ” iff in every world where α is true, β is also true

Model Symbols

Knowledge Base

Query

All Possible Models

A	0	0	0	0	1	1	1	1
B	0	0	1	1	0	0	1	1
C	0	1	0	1	0	1	0	1
A	0	0	0	0	1	1	1	1
$B \Rightarrow C$	1	1	0	1	1	1	0	1
$A \Rightarrow B \vee C$	1	1	1	1	0	1	1	1
C	0	1	0	1	0	1	0	1

Entailment

How do we implement a logical agent that proves entailment?

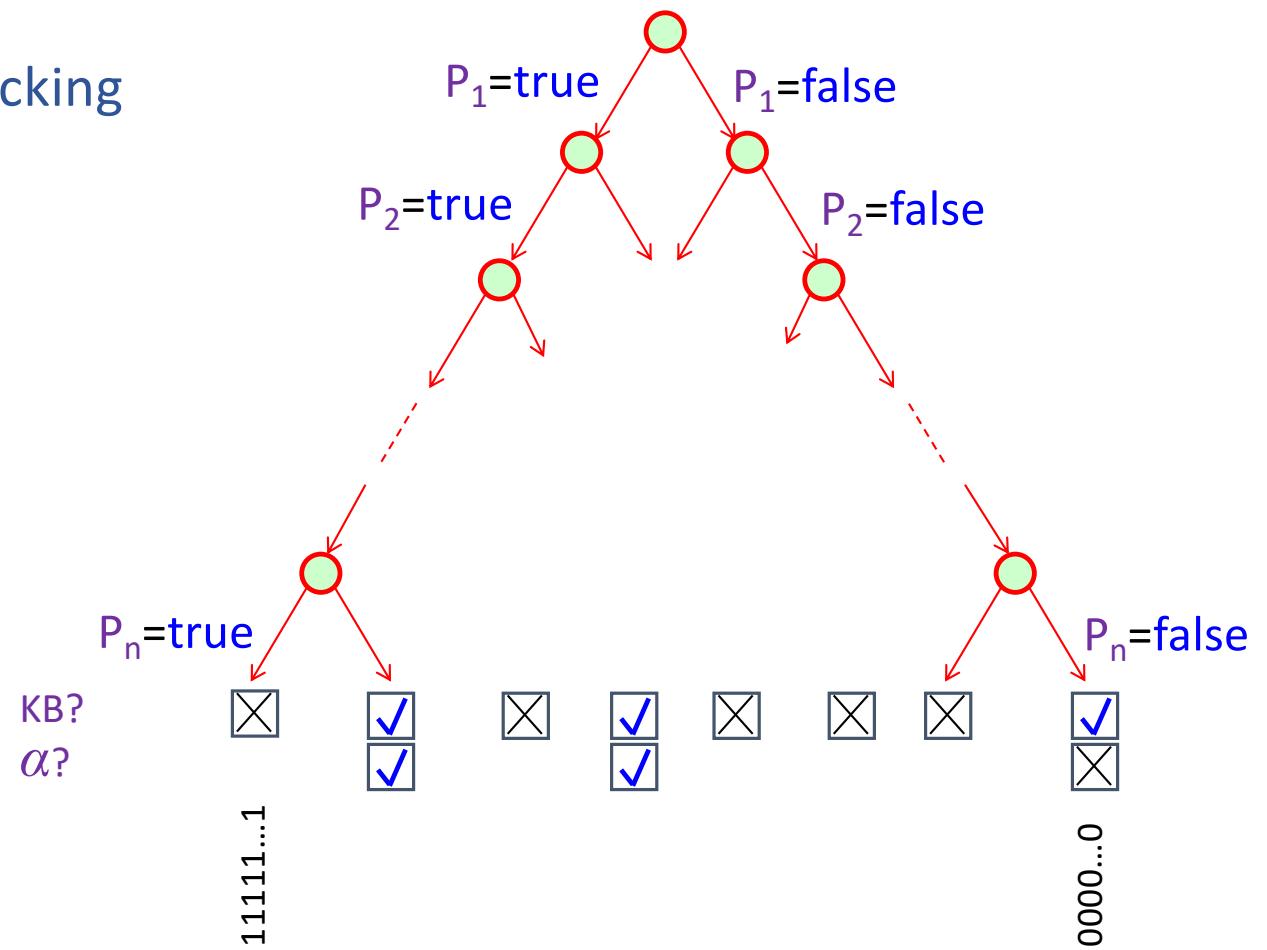
- Logic language
 - Propositional logic
 - First order logic
- Inference algorithms
 - Theorem proving
 - Model checking

Simple Model Checking

Same recursion as backtracking

$O(2^n)$ time, linear space

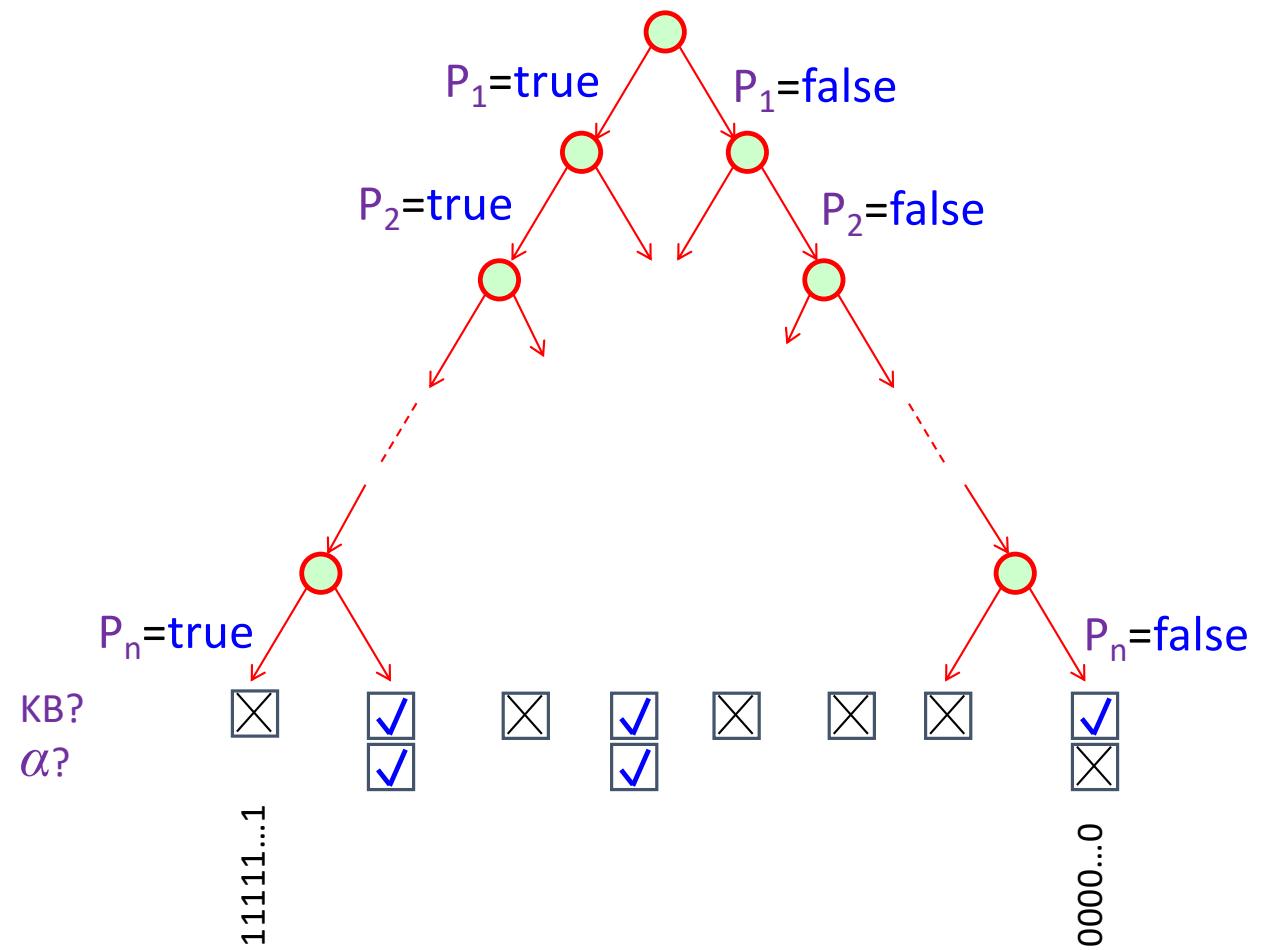
We can do much better!



Piazza Poll 4

Which would you choose?

- DFS
- BFS



Simple Model Checking

function TT-ENTAILS?(KB, α) returns true or false

```
return TT-CHECK-ALL(KB,  $\alpha$ , symbols(KB)  $\cup$  symbols( $\alpha$ ), {})
```

function TT-CHECK-ALL(KB , α , symbols , model) returns true or false

if empty?(symbols) then

if $\text{PL-TRUE}(\text{KB}, \text{model})$ then return $\text{PL-TRUE}(\alpha, \text{model})$

else return true

else

$P \leftarrow \text{first}(\text{symbols})$

rest \leftarrow rest(symbols)

return **and** (TT-CHECK-ALL(KB, α , rest, model $\cup \{P = \text{true}\}$)

TT-CHECK-ALL(KB, α , rest, model $\cup \{P = \text{false}\}$))

Propositional Logic

Check if sentence is true in given model

In other words, does the model *satisfy* the sentence?

function PL-TRUE?(α ,model) returns true or false

if α is a symbol then return $\text{Lookup}(\alpha, \text{model})$

if $Op(\alpha) = \neg$ then return $\text{not}(\text{PL-TRUE?}(\text{Arg1}(\alpha), \text{model}))$

if $\text{Op}(\alpha) = \wedge$ then return $\text{and}(\text{PL-TRUE?}(\text{Arg1}(\alpha), \text{model}),$

PL-TRUE?(Arg2(α),model))

etc.

(Sometimes called “recursion over syntax”)

Inference: Proofs

A proof is a *demonstration of entailment* between α and β

Method 1: *model-checking*

- For every possible world, if α is true make sure that is β true too
- OK for propositional logic (finitely many worlds); not easy for first-order logic

Method 2: *theorem-proving*

- Search for a sequence of proof steps (applications of *inference rules*) leading from α to β
- E.g., from $P \wedge (P \Rightarrow Q)$, infer Q by *Modus Ponens*

Properties

- *Sound* algorithm: everything it claims to prove is in fact entailed
- *Complete* algorithm: every sentence that is entailed can be proved

Simple Theorem Proving: Forward Chaining

Forward chaining applies **Modus Ponens** to generate new facts:

- Given $X_1 \wedge X_2 \wedge \dots \wedge X_n \Rightarrow Y$ and X_1, X_2, \dots, X_n
- Infer Y

Forward chaining keeps applying this rule, adding new facts, until nothing more can be added

Requires KB to contain only *definite clauses*:

- (Conjunction of symbols) \Rightarrow symbol; or
- A single symbol (note that X is equivalent to $\text{True} \Rightarrow X$)

Forward Chaining Algorithm

function **PL-FC-ENTAILS?**(KB, q) returns true or false

 count \leftarrow a table, where $\text{count}[c]$ is the number of symbols in c 's premise

 inferred \leftarrow a table, where $\text{inferred}[s]$ is initially false for all s

 agenda \leftarrow a queue of symbols, initially symbols known to be true in KB

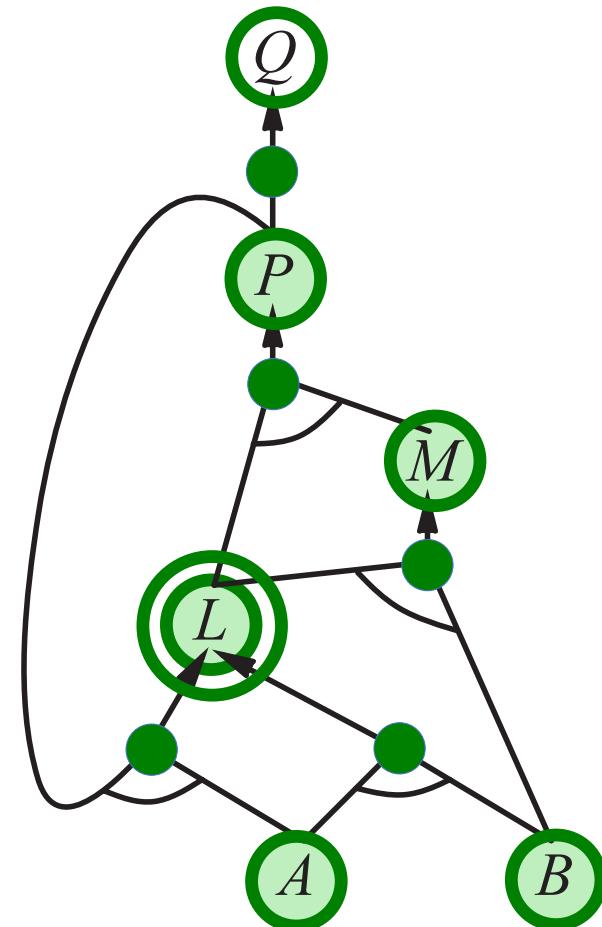
<i>CLAUSES</i>	<i>COUNT</i>	<i>INFERRED</i>	<i>AGENDA</i>
$P \Rightarrow Q$	1	A false	
$L \wedge M \Rightarrow P$	2	B false	
$B \wedge L \Rightarrow M$	2	L false	
$A \wedge P \Rightarrow L$	2	M false	
$A \wedge B \Rightarrow L$	2	P false	
A	0	Q false	
B	0		

Forward Chaining Example: Proving Q

CLAUSES	COUNT	INFERRRED
$P \Rightarrow Q$	1/0	A false true
$L \wedge M \Rightarrow P$	2/1/0	B false true
$B \wedge L \Rightarrow M$	2/1/0	L false true
$A \wedge P \Rightarrow L$	2/1/0	M false true
$A \wedge B \Rightarrow L$	2/1/0	P false true
A	0	Q false true
B	0	

AGENDA

A B * M R * Q



Forward Chaining Algorithm

```
function PL-FC-ENTAILS?(KB, q) returns true or false
  count ← a table, where count[c] is the number of symbols in c's premise
  inferred ← a table, where inferred[s] is initially false for all s
  agenda ← a queue of symbols, initially symbols known to be true in KB
  while agenda is not empty do
    p ← Pop(agenda)
    if p = q then return true
    if inferred[p] = false then
      inferred[p] ← true
      for each clause c in KB where p is in c.premise do
        decrement count[c]
        if count[c] = 0 then add c.conclusion to agenda
  return false
```

Properties of forward chaining

Theorem: FC is sound and complete for definite-clause KBs

Soundness: follows from soundness of Modus Ponens (easy to check)

Completeness proof:

1. FC reaches a fixed point where no new atomic sentences are derived
2. Consider the final *inferred* table as a model m , assigning true/false to symbols
3. Every clause in the original KB is true in m

Proof: Suppose a clause $a_1 \wedge \dots \wedge a_k \Rightarrow b$ is false in m

Then $a_1 \wedge \dots \wedge a_k$ is true in m and b is false in m

Therefore the algorithm has not reached a fixed point!

4. Hence m is a model of KB
5. If $\text{KB} \models q$, q is true in every model of KB, including m

A	false	true
B	false	true
L	xxxx	true
M	xxxx	true
P	false	true
Q	xxxx	true

Inference Rules

Modus Ponens

$$\frac{\alpha \Rightarrow \beta, \quad \alpha}{\beta}$$

Notation Alert!

Unit Resolution

$$\frac{a \vee b, \quad \neg b \vee c}{a \vee c}$$

General Resolution

$$\frac{a_1 \vee \cdots \vee a_m \vee b, \quad \neg b \vee c_1 \vee \cdots \vee c_n}{a_1 \vee \cdots \vee a_m \vee c_1 \vee \cdots \vee c_n}$$

Resolution

Algorithm Overview

function PL-RESOLUTION?(KB, α) returns true or false

We want to prove that KB entails α

In other words, we want to prove that we cannot satisfy (KB and not α)

1. Start with a set of CNF clauses, including the KB as well as $\neg\alpha$
2. Keep resolving pairs of clauses until
 - A. You resolve the empty clause
Contradiction found!
 $KB \wedge \neg\alpha$ cannot be satisfied
Return true, KB entails α
 - B. No new clauses added
Return false, KB does not entail α

Resolution

Example trying to prove $\neg P_{1,2}$

General Resolution

$$\frac{a_1 \vee \dots \vee a_m \vee b, \quad \neg b \vee c_1 \vee \dots \vee c_n}{a_1 \vee \dots \vee a_m \vee c_1 \vee \dots \vee c_n}$$

Knowledge Base

$\neg P_{2,1} \vee B_{1,1}$

$\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}$

$\neg P_{1,2} \vee B_{1,1}$

$\neg B_{1,1}$

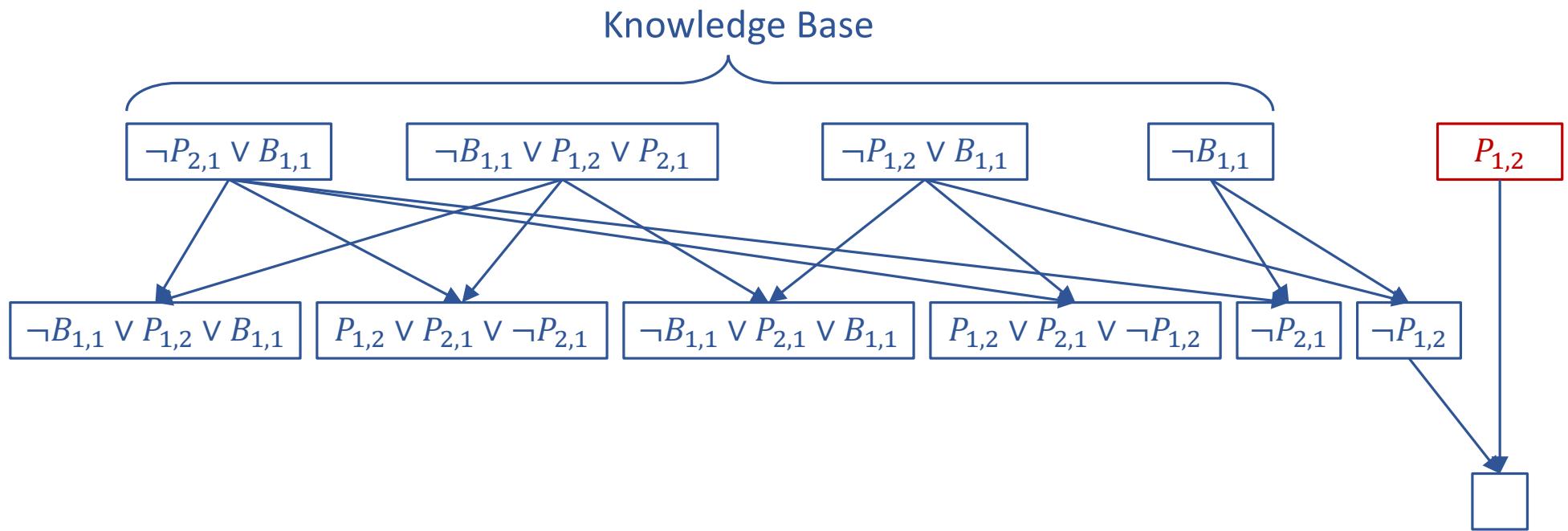
$\neg \neg P_{1,2}$

Resolution

Example trying to prove $\neg P_{1,2}$

General Resolution

$$\frac{a_1 \vee \dots \vee a_m \vee b, \quad \neg b \vee c_1 \vee \dots \vee c_n}{a_1 \vee \dots \vee a_m \vee c_1 \vee \dots \vee c_n}$$



Resolution

function **PL-RESOLUTION?**(KB, α) returns true or false

 clauses \leftarrow the set of clauses in the CNF representation of KB $\wedge \neg\alpha$

 new $\leftarrow \{ \}$

 loop do

 for each pair of clauses C_i, C_j in clauses do

 resolvents \leftarrow **PL-RESOLVE**(C_i, C_j)

 if resolvents contains the empty clause then

 return true

 new \leftarrow new \cup resolvents

 if new \subseteq clauses then

 return false

 clauses \leftarrow clauses \cup new

Properties

Forward Chaining is:

- Sound and complete for definite-clause KBs
- Complexity: linear time

Resolution is:

- Sound and complete for any PL KBs!
- Complexity: exponential time 😞