Closure properties of regular languages

Proposition:
Let Σ be some finite alphabet.
If $L \subseteq \Sigma^*$ is regular, then so is $\overline{L} = \Sigma^* \setminus L$.

Proof:
Theorem:
Let Σ be some finite alphabet. If $L_1 \subseteq \Sigma^*$ and $L_2 \subseteq \Sigma^*$ are regular, then so is $L_1 \cup L_2$.

Proof:

The mindset

Step 1: Imagining ourselves as a DFA
Example

$L_1 =$ strings with even number of 1’s

$L_2 =$ strings with length divisible by 3.

Closed under union

Input: 101001

Accept
Main idea:
Construct a DFA that keeps track of both at once.

Step 2: Formally defining the DFA
Closed under union

Proof: Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA deciding L_1 and $M' = (Q', \Sigma, \delta', q'_0, F')$ be a DFA deciding L_2. We construct a DFA $M'' = (Q'', \Sigma, \delta'', q''_0, F'')$ that decides $L_1 \cup L_2$, as follows:

More closure properties

Closed under union:

Closed under concatenation:

Closed under star:

super awesome vs regular

What is the relationship between super awesome and regular?
Theorem:
Can define regular languages recursively as follows:

Closed under concatenation

Theorem:
Let Σ be some finite alphabet. If $L_1 \subseteq \Sigma^*$ and $L_2 \subseteq \Sigma^*$ are regular, then so is $L_1 L_2$.

The mindset

Imagine yourself as a DFA.

Rules:
1) Can only scan the input once, from left to right.
2) Can only remember “constant” amount of information.

 should not change based on input length
Step 1: Imagining ourselves as a DFA

Given \(w \in \Sigma^* \), we need to decide if
\[
\text{for } u \in L_1, v \in L_2.
\]

Problem: Don’t know where \(u \) ends, \(v \) begins.
When do you stop simulating \(M_1 \) and start simulating \(M_2 \) ?

Suppose God tells you \(u \) ends at \(w_3 \).

<table>
<thead>
<tr>
<th>(w)</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_1)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(w_2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(w_3)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(w_4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(w_5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(w_6)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(w_7)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(w_8)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(w_9)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(w_{10})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

thread:
Step 2: Formally defining the DFA

\[
M_1 = (Q, \Sigma, \delta, q_0, F) \quad M_2 = (Q', \Sigma, \delta', q'_0, F')
\]

\[
\begin{align*}
Q'' &= \\
\delta'' : \\
q''_0 &= \\
F'' &=
\end{align*}
\]