ZACHARY KARATE CLUB

34 vertices (karatekas), 78 edges (friendships)

networkkarate.tumblr.com
Vertices = people, edges = Friendships

#vertices $n = 10^9$, #edges $m = 10^{12}$
Kidney Exchange

Vertices = patient-donor pairs, edges = compatibility

UNOS pool, Dec 2010 [Courtesy John Dickerson, CMU]

World Wide Web

Vertices = pages, edges = hyperlinks

If your problem has a graph, great. If not, try to make it have a graph!
TYPES OF GRAPHS

- Simple
- Undirected Graphs
- Directed Graphs
- General Graphs
- "parallel edges"
- "self-loops"

RETRONYM

- Acoustic Guitar
- Electric Guitar

BASIC DEFINITIONS

- A graph G is a pair:
 - V is the set of vertices/nodes; $|V| = n$
 - E is the set of edges; $|E| = m$
- Each edge is a pair $\{u, v\}$, where $u \neq v$
- Example:
 - $V = \{a, b, c, d\}$
 - $E = \{\{a, b\}, \{a, c\}, \{b, c\}, \{c, d\}\}$
EDGE CASES

- A graph with no edges is called an empty graph
- Example:
 - $V = \{1, 2, 3, 4\}$
 - $E = \emptyset$

THE NULL GRAPH

IS THE NULL-GRAF A POINTLESS CONCEPT?

Frank Harary
University of Michigan
and Oxford University

Ronald C. Read
University of Waterloo

ABSTRACT

The graph with no points and no lines is discussed critically. Arguments for and against its official admission as a graph are presented. This is accompanied by an extensive survey of the literature. Paradoxical properties of the null-graph are noted. No conclusion is reached.

THE NULL GRAPH

Figure 1. The Null Graph
Mr. Vertex’s Neighborhood

- If \(\{u, v\} \in E \), \(u \) is a neighbor of \(v \)
- The neighborhood \(N(u) \) of \(u \) is \(\{v \in V \mid \{u, v\} \in E\} \)
- The degree \(\deg(u) \) of \(u \) is \(|N(u)| \)

\[N(b) = \{a, c\} \]
\[\deg(b) = 2 \]

Theorem: \(\sum_{u \in V} \deg(u) = 2m \)

Proof:
- Each vertex places a token on each of its edges
- The number of tokens is \(\sum_{u \in V} \deg(u) \)
- Each edge has exactly two tokens placed on it
- The number of tokens is \(2m \) \(\blacksquare \)

2 + 2 + 3 + 1 = 2 \cdot 4

Facebook, revisited

\#vertices \(n = 10^9 \), \#edges \(m = 10^{12} \)
REGULAR GRAPHS

- A graph is d-regular if all nodes have degree d
- The empty graph is 0-regular
- 1-regular graph is called a perfect matching
- Poll 1: How many 2-regular graphs with $V = \{a, b, c, d\}$ are there?

| 1 | 3 | 6 | 12 |

3-REGULAR GRAPHS

There are lots and lots of possibilities

CONNECTEDNESS

- Graph G is connected if for all $u, v \in V$ there is a path between u and v

This 11-vertex graph is not connected
It has 3 connected components
CONNECTEDNESS

What is the minimum number of edges needed to make a connected 27-vertex graph?

\[n = 1 \quad \text{Done} \quad m = 0 \]
\[n = 2 \quad m = 1 \quad \text{necessary and sufficient} \]
\[n = 3 \quad m = 2 \quad \text{necessary and sufficient} \]
\[n = 4 \quad m = 3 \quad \text{necessary and sufficient} \]

\[n - 1 \text{ edges are always sufficient to connect an } n\text{-vertex graph} \]

“star graph”

“path graph”

“something else”
Theorem: $n - 1$ edges are also necessary to connect an n-vertex graph

Proof:
- If G has k connected components, and G' is formed from G by adding an edge, then G' has at least $k - 1$ components
- Add edges one by one to obtain a single connected component, need at least $n - 1$ steps.

ACYCLIC GRAPHS

Poll 2: Assume that G is connected. Then:
1. $m = n - 1 \Rightarrow G$ is acyclic
2. G is acyclic $\Rightarrow m = n - 1$
3. G is acyclic $\Rightarrow m = n - 1$
4. Incomparable

TREES

A tree is a connected acyclic graph
Graph Theory Haiku

```

```

Ore’s Theorem

- A Hamiltonian cycle in \(G \) is a cycle that visits every \(v \in V \) exactly once (see Lect. 9).
- Theorem [Ore, 1960]: Let \(G \) be a graph on \(n \geq 3 \) vertices such that \(\deg(u) + \deg(v) \geq n \) for any \(u, v \in V \) that are not neighbors, then \(G \) contains a Hamiltonian Cycle.

Proof of Ore’s Theorem

- Color the edges of \(G \) blue, add red edges to form a complete graph, and choose a Hamiltonian Cycle \(\mathcal{C} \).
- If \(\mathcal{C} \) is not completely blue, will find \(\mathcal{C'} \) with more blue edges.
PROOF OF ORE’S THEOREM

• Let \((a, b) \) be a red edge in \(C \)
• Let \(S \) be the successors of \(N(a) \) on \(C \)
• \(\deg(b) \geq n - \deg(a) \)
 \[= |V| - |N(a)| \]
 \[= |V| - |S| \]
 \[> |V \setminus (S \cup \{b\})| \]
• So \(b \) is a neighbor of \(c \in S \)
• We can find a bluer cycle \(\Box \)

SUMMARY

• Terminology:
 - Regular graph
 - Connected graph
 - Neighborhood, degree
 - Hamiltonian cycle
• Theorems:
 - If \(G \) is connected
 \(|E| = n - 1 \implies \text{acyclic} \)
 - \(\sum_{u \in V} \deg(u) = 2m \)