News Post

- No recitation this Friday; expect another large group review session on this week’s material!
- Conceptual OH on Saturdays is a great time to review old material as well as gain greater understanding of new topics and ideas!
- If you have any questions about material, logistics, or anything else 251 related make sure to reach out to your mentor!

New Phrases

- We say a problem is in NP if there exists a polynomial time verifier TM V and a constant $k > 0$ such that for all $x \in \Sigma^*$:
 - if $x \in L$, then there exists a certificate u with $|u| \leq |x|^k$ such that $V(x, u)$ accepts.
 - if $x \notin L$, then for all $u \in \Sigma^*$, $V(x, u)$ rejects.
- We say there is a polynomial-time many-one reduction from A to B if there is a polynomial-time computable function $f : \Sigma^* \rightarrow \Sigma^*$ such that $x \in A$ if and only if $f(x) \in B$. We write this as $A \leq^P_m B$. (We also refer to these reductions as Karp reductions.)
- A problem Y is NP-hard if for every problem $X \in NP$, $X \leq^P_m Y$.
- A problem is NP-complete if it is both in NP and NP-hard.
- A Boolean function is one of the form $f : \{0,1\}^n \rightarrow \{0,1\}$. They can be thought of as n-bit truth tables.
- A Boolean circuit with n-input variables ($n \geq 0$) is a directed acyclic graph where the vertices represent gates and the directed edges represent wires. The circuit has n input gates each with in-degree 0 and 1 output gate with out-degree 1. In our standard model we include AND, OR, and NOT gates which have in-degree 2 and correspond to their respective binary functions.
- A family of circuits is an infinite sequence C_0, C_1, C_2, \ldots where C_n is a circuit with n input gates
- We say that a family C decides a language L if for all $n \in \mathbb{N}$, C_n decides $L_n = L \cap \{0,1\}^n$

New Point of View

Imagine there existing an untrustworthy, omnipotent (computationally unbounded) Prover who likes to make claims about membership in a language L. On the other hand, you are a Verifier who can merely compute things that run in polynomial time. You are interested in verifying if a string is in L.

The Prover claims to you that a certain $x \in L$. In order to convince you, the Prover uses its unlimited computational power to provide a polynomial length (with respect to x) certificate/proof to you. You then use the certificate to verify whether x is truly in L. If $L \in NP$ then

(a) can the Prover convince you for every $x \in L$ that x truly is a member of L?
(b) can the Prover ever fool you into thinking some $x \in L$ when really $x \notin L$?

Conversely if L is such a language so that Prover can always provide you with polynomial length proofs for $x \in L$, and is never able to deceive you for $x \notin L$ then is $L \in NP$?
If \(L \in \text{NP} \) there exists some polytime verifier TM \(V \) that the \textbf{Verifier} can use to verify whether a string \(x \in L \). If \(x \in L \), then there exists some polylength certificate such that the verifier TM accepts, so \textbf{Prover} should be able to convince \textbf{Verifier} by providing this certificate/proof. On the other hand, if \(x \in L \), the verifier TM \(V \) is such that \(\forall u \in \Sigma^* \), \(V(x, u) \) rejects, so if the \textbf{Verifier} uses \(V \) then there is nothing \textbf{Prover} can do to produce a proof which convinces \textbf{Verifier} that \(x \in L \) when really \(x \notin L \).

For the converse note that by definition the algorithm used by \textbf{Verifier} constitutes a polytime verifier for \(L \). If \(x \in L \) then there exists a polylength certificate, namely one that the \textbf{Prover} could use to convince the \textbf{Verifier}. If \(x \notin L \) then regardless of what proof \textbf{Prover} sends over, the algorithm used by \textbf{Verifier} will not accept.

No Privacy

3COL: Given an undirected graph, can we color the vertices with 3 colors so that no two adjacent vertices share the same color?

Show 3COL is in \textbf{NP}.

See proposition in section 12.1 on Diderot.

Natural Circuits

A language \(L \subseteq \{0, 1\}^\ast \) is called skinny if there is some constant \(k > 0 \) such that for all \(n \in \mathbb{N} \), we have \(L \cap \{0, 1\}^n \leq n^k \).

Show that any skinny language can be computed by a polynomial size language family.

Consider a skinny language \(L \) and its restriction to words of length \(n \in \mathbb{N} \); call the restriction \(L_n \). Then there exists a polynlength (with respect to \(n \)) DNF such that \(x \in L_n \) if and only if the DNF is true when its variables are set to the values that correspond to \(x \).

Note that if \(L_n \) is polynomially bounded, the number of clauses in the DNF is polynomially bounded and only takes a polynomial number of connectives to join all the clauses as well as join the literals within the clauses. Creating negative literals adds a polynomially bounded number of connectives since each clause has \(n \) literals and there are a polynomially bounded number of clauses. There are a polynomially bounded number of ORs because there are a polynomially bounded number of clauses, and there a polynomially bounded number of ANDs because there are a polynomially bounded number of clauses and each clause has length at most \(n \).