These Decidable Definitions Have Undecidable Ends

- A **decider** is a TM that halts on all inputs.
- A language \(L \) is **undecidable** if there is no TM \(M \) that halts on all inputs such that \(M(x) \) accepts if and only if \(x \in L \).
- A language \(A \) reduces to \(B \) if it is possible to decide \(A \) using an algorithm that decides \(B \) as a subroutine. Denote this as \(A \leq B \) (read: \(B \) can be used to solve \(A \) so \(A \) is at most as hard as \(B \)).
- Countability cheat sheet: You are given a set \(A \). Is it countable or uncountable?

\[
egin{align*}
|A| &\leq |N| \quad (A \text{ is countable}) \\
&- \text{Show directly an injection from } A \text{ to } N \quad (A \hookrightarrow N) \text{ or a surjection from } N \text{ onto } A \\
&\quad (N \twoheadrightarrow A) \\
&- \text{Show } |A| \leq |B|, \text{ where } B \text{ is one of } Z, Z \times Z, Q, \Sigma^*, Q[x], \text{ etc.}
\end{align*}
\]

This one is important and very powerful

\[
egin{align*}
|A| &> |N| \quad (A \text{ is uncountable}) \\
&- \text{Show directly using a diagonalization argument.} \\
&- \text{Show that } |\{0,1\}^\infty| \leq |A|, \text{ i.e. an injection from } \{0,1\}^\infty \text{ to } A.
\end{align*}
\]

Counting sheep

For each set below, determine if it is countable or not. Prove your answers.

(a) \(S = \{a_1a_2a_3 \ldots \in \{0,1\}^\infty \mid \forall n \geq 1 \text{ the string } a_1 \ldots a_n \text{ contains more 1's than 0's.} \} \)

We offer two solutions, one by constructing an explicit injection from \(\{0,1\}^\infty \) to \(S \), and one by diagonalization.

For our first proof, we note that if we can construct \(f : \{0,1\}^\infty \to S \) such that \(f \) is injective, then \(|\{0,1\}^\infty| \leq |S| \), so as the former is uncountable, so is \(S \). Let \(s \in \{0,1\}^\infty \) and \(i \in \mathbb{N} \). Write \(s = s_1s_2 \cdots \), and define \(f(s)_i \) to be

\[
f(s)_i = \begin{cases}
1 & \text{if } i = 1 \text{ or } i \text{ is even} \\
\frac{s_{(i-1)/2}}{2} & \text{otherwise}
\end{cases}
\]
Informally, \(f(s) = 11s_1s_21\cdots \). First, we show that this is injective. Suppose \(s, s' \in \{0, 1\}^{\infty} \) such that \(s \neq s' \). Then if we write \(s = s_1s_2\cdots \) and \(s' = s'_1s'_2\cdots \), then there must be some index \(i \) at which \(s_i \neq s'_i \). Then \(f(s)_{2i+1} = s_i \neq s'_i = f(s')_{2i+1} \), and so \(f(s) \neq f(s') \). So \(f \) is injective.

Secondly, we show that \(f(s) \) is in \(S \). Let \(s \in \{0, 1\}^{\infty} \) and \(n \geq 1 \). Clearly, the condition holds for \(n = 1 \) and \(n = 2 \). Now consider \(n \geq 3 \). If \(n \) is even, then there will be at least \(\frac{n}{2} + 1 \) 1's by construction, so there are definitely more 1's than 0's in the first \(n \) digits. If \(n \) is odd, then there will be at least \(\frac{n+1}{2} = \frac{n}{2} + \frac{1}{2} \) 1's by construction, so there still are definitely more 1's than 0's in the first \(n \) digits. Thus \(f(s) \in S \). As we have a valid injection, \(S \) is uncountable.

For diagonalization, suppose for the sake of contradiction that \(S \) were countable. In particular, this means that there is a bijection \(f : \mathbb{N} \to S \). We now construct an element \(s \in S \) such that no input \(n \) is mapped to \(s \).

Define \(s \) as follows:

\[
s_i = \begin{cases}
1 & \text{if } i = 1 \text{ or } i \text{ even} \\
1 - f \left(\frac{i-1}{2} \right) & \text{otherwise}
\end{cases}
\]

First, we note that for any \(n \), \(f(n) \) differs from \(s \) at the \(2n + 1 \) digit, by construction. Furthermore, \(s \in S \) for the same reason as the construction of \(f \) in the previous section. As we have an element of \(S \) which is not in our list, we have a contradiction, so \(S \) must be uncountable.

(b) \(\Sigma^* \), where \(\Sigma \) is an alphabet that is allowed to be countably infinite (e.g., \(\Sigma = \mathbb{N} \)).

We apply the CS method (countability = encodability), representing each element as a finite string from a finite alphabet. Our alphabet will be the set of digits, as well as the comma character. To write down a finite string from \(\Sigma \), first note that \(\Sigma \) is countable, and so there is an injection from \(\Sigma \) to \(\mathbb{N} \). We can thus represent each string, instead of a concatenation of characters from sigma, as a comma-delimited list of natural numbers, each of which are representable as a finite string of digits. As we have a finite string from a finite alphabet representation, this set is countable.

Doesn’t Look Like Anything (Decidable) To Me

Prove that the following languages are undecidable (below, \(M, M_1, M_2 \) refer to TMs).

(a) \(\text{REGULAR} = \{ \langle M \rangle : L(M) \text{ is regular} \} \).

We show that \(\text{REGULAR} \) is undecidable via a reduction from \(\text{HALTS} \). Suppose \(M_{\text{REG}} \) decides \(\text{REGULAR} \). We define a decider for \(\text{HALTS} \) as follows

```python
def M_HALTS(<M, x>):
    <HELP> =
    """def HELP(w):
        if w in {0^n1^n | n a natural number}:
            ACCEPT
        else:
            M(x)
    ACCEPT"
```

(b) \(\Sigma^* \), where \(\Sigma \) is an alphabet that is allowed to be countably infinite (e.g., \(\Sigma = \mathbb{N} \)).

We apply the CS method (countability = encodability), representing each element as a finite string from a finite alphabet. Our alphabet will be the set of digits, as well as the comma character. To write down a finite string from \(\Sigma \), first note that \(\Sigma \) is countable, and so there is an injection from \(\Sigma \) to \(\mathbb{N} \). We can thus represent each string, instead of a concatenation of characters from sigma, as a comma-delimited list of natural numbers, each of which are representable as a finite string of digits. As we have a finite string from a finite alphabet representation, this set is countable.
return M_REG(⟨HELP⟩)

Proof of correctness:
Suppose that $M(x)$ halts, then $L(HELP) = \Sigma^*$, so $M_REG(⟨HELP⟩)$ accepts, as desired.
Suppose that $M(x)$ loops, then $L(HELP) = \{0^n1^n | n \in \mathbb{N}\}$, so $M_REG(⟨HELP⟩)$ rejects, as desired.
Thus, we’ve shown that $HALTS \leq REGULAR$, so $REGULAR$ is undecidable.

(b) $TOTAL = \{⟨M⟩| M$ halts on all inputs$\}$.

We show that $TOTAL$ is undecidable via a reduction from $HALTS$. Suppose M_{TOTAL} decides $TOTAL$. We define a decider for $HALTS$ as follows

```python
def M_HALTS(<M, x>):
    <HELP> = 
    """def HELP(w):
    M(x)
    ACCEPT"
    return M_TOTAL(<HELP>)
```

Proof of correctness:
Suppose that $M(x)$ halts, then HELP halts on all inputs, so $M_{TOTAL}(⟨HELP⟩)$ accepts, as desired.
Suppose that $M(x)$ loops, then HELP does not halt on all inputs, so $M_{TOTAL}(⟨HELP⟩)$ rejects, as desired.
Thus, we’ve shown that $HALTS \leq TOTAL$, so $TOTAL$ is undecidable.

(c) $DOLORES = \{⟨M_1, M_2⟩ : \exists w \in \Sigma^* such that both M_1(w) and M_2(w) accept$\}.

We show that $DOLORES$ is undecidable via a reduction from $HALTS$. Suppose $M_{DOLORES}$ decides $DOLORES$. We define a decider for $HALTS$ as follows

```python
def M_HALTS(<M, x>):
    <HELP> = 
    """def HELP(w):
    M(x)
    ACCEPT"
    return M_DOLORES(<HELP, HELP>)
```

Proof of correctness:
Suppose that $M(x)$ halts, then HELP accepts all inputs, so $M_{DOLORES}(⟨HELP, HELP⟩)$ accepts, as desired.
Suppose that $M(x)$ loops, then HELP rejects all inputs, so $M.DOLORES(\langle HELP, HELP \rangle)$ rejects, as desired.

Thus, we’ve shown that $\text{HALTS} \leq \text{DOLORES}$, so DOLORES is undecidable.

(Extra) Lose All Scripted Responses. Improvisation Only

Let $\text{FINITE} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is finite} \}$.

Show that $\text{TOTAL} \leq \text{FINITE}$.

Suppose that $M.FINITE$ decides FINITE.

We define a decider for TOTAL as follows, where $<$ means lexicographically smaller.

```python
def M_TOTAL(<M>):
    <HELP> =
    """def HELP(w):
        for y <= w:
            M(y)
            ACCEPT"
    return not M_FINITE(<HELP>)
```

Proof of correctness:

Suppose M is total and halts on all inputs, then $L(HELP) = \Sigma^*$, so $M.FINITE(\langle HELP \rangle)$ will reject, as desired.

Suppose M is not total and let w be the lexicographically smallest string that M does not halt on. Then $HELP$ will not accept any string lexicographically greater (or equal to) than w, as $M(w)$ will not halt. Thus, since there are only finitely many strings lexicographically smaller than w, $L(HELP)$ is finite. Thus, $M.FINITE(\langle HELP \rangle)$ accepts, as desired.

(Bonus) The Maize is not Meant For You

Josh Corn is trying to write a program P such that given a natural number n, $P(n)$ is the most number of steps a TM on n states can take before halting. Show that this is not possible.