Announcements

Reminders:
- Midterm 1 during February 20 writing session.
- Solution session on Sunday, regrades due Wednesday

Review

(Un)decidability and reductions:
- A **decider** is a TM that halts on all inputs.
- A language L is **undecidable** if there is no TM M that halts on all inputs such that $M(x)$ accepts if and only if $x \in L$.
- A language A **reduces** to B if it is possible to decide A given oracle access to a subroutine that decides B, Denote this as $A \leq_T B$ or simply $A \leq B$ (read: B is at least as hard as A)

Time Complexity and big-Oh:
- The running time of an algorithm A is a function $T_A : \mathbb{N} \to \mathbb{N}$ defined by $T_A(n) = \max_{I \in S} \{\text{number of steps } A \text{ takes on } I\}$, where S is the set of instances I of size n.
- For $f, g : \mathbb{N}^+ \to \mathbb{R}^+$, we say $f(n) = O(g(n))$ if there exist constants $c, n_0 > 0$ such that $\forall n \geq n_0$, we have $f(n) \leq cg(n)$.
- For $f, g : \mathbb{N}^+ \to \mathbb{R}^+$, we say $f(n) = \Omega(g(n))$ if there exist constants $c, n_0 > 0$ such that $\forall n \geq n_0$, we have $f(n) \geq cg(n)$.
- For both of the above, your choice of c and n_0 cannot depend on n.
- For $f, g : \mathbb{N}^+ \to \mathbb{R}^+$, we say $f(n) = \Theta(g(n))$ if $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.

Can’t tell if one is regular

Prove that the following language is undecidable where M refers to a TM:

$$\text{REGULAR} = \{\langle M \rangle : L(M) \text{ is regular}\}.

We show that REGULAR is undecidable via a reduction from HALTS. Suppose M_{REG} decides REGULAR. We define a decider for HALTS as follows:

```python
def M_HALTS(<M, x>):
  """def HELP(w):
    if w in {0^n1^n | n a natural number}:
      ACCEPT
    else:
```
M(x)
ACCEPT"
return M_REG(<HELP>)

Proof of correctness:
Suppose that \(M(x) \) halts, then \(L(HELP) = \Sigma^* \), so \(M_REG(\langle HELP \rangle) \) accepts, as desired.
Suppose that \(M(x) \) loops, then \(L(HELP) = \{0^n1^n | n \in \mathbb{N} \} \), so \(M_REG(\langle HELP \rangle) \) rejects, as desired.
Thus, we’ve shown that \(HALTS \leq REGULAR \), so \(REGULAR \) is undecidable.

O, I Think I Understand Asymptotics Now
Let \(f, g, h \) be functions from \(\mathbb{N} \) to \(\mathbb{N} \). Prove or disprove the following:
(a) If \(f = O(g) \) and \(g = O(h) \), then \(f = O(h) \)

We know by definition that there exist \(n_1 \) and \(c_1 \) such that for all \(n \geq n_1 \), \(f(n) \leq c_1 g(n) \).
Similarly, we have \(n_2 \) and \(c_2 \) for \(g \) and \(h \).
Choose \(n_0 = \max(n_1, n_2) \) and \(c = c_1 c_2 \) and let \(n \geq n_0 \).
Then, \(f(n) \leq c_1 g(n) \leq c_1 c_2 h(n) = ch(n) \), as desired, so \(f = O(h) \)

(b) If \(f = O(g) \), then \(g = O(f) \)

Let \(f(n) = 1 \) and \(g(n) = n \).
While \(f = O(g) \), there is no \(n_0, c \) you can pick that makes \(n \leq c \) for all \(n \geq n_0 \), as we just let \(n > \max(c, n_0) \) as a counterexample.

(c) \(f = O(g) \) or \(f = \Omega(g) \)

Let \(f(n) = 1 \) if \(n \) is even and \(n \) if \(n \) is odd.
Let \(g(n) = n \) if \(n \) is even and \(1 \) if \(n \) is odd.
By the same argument as the previous problem, if we attempt to choose \(c, n_0 \) for either \(O \) or \(\Omega \), we will be able to find a sufficiently large \(n \) (even or odd as necessary) to disprove the inequality.

Bits and Pieces
Determine which of the following problems can be computed in worst-case polynomial-time, i.e. \(O(n^k) \) time for some constant \(k \), where \(n \) denotes the number of bits in the binary representation of the input.
If you think the problem can be solved in polynomial time, give an algorithm in pseudo-code, explain briefly why it gives the correct answer, and argue carefully why the running time is polynomial. If you think the problem cannot be solved in polynomial time, then provide a proof.

(a) Give an input positive integer \(N \), output \(N! \).

To represent the value of \(N! \), we will need \(\log_2(N!) \) bits. As shown in the course notes, \(\log_2(N!) = \Theta(N \log N) \). Just writing this information down will take exponential time in input-size which is \(O(\log N) \).

(b) Given as input a positive integer \(N \), output True if \(N = M! \) for some positive integer \(M \).
The polynomial-time algorithm is as follows: starting \(M \) as 1, we keep creating \(M! \) by multiplying \(M \) each time in the loop. Then, in every loop, we check whether \(M! < N \). When \(M! \geq N \), we exit the loop and check whether \(M! = N \) or \(M! > N \). If they are equal, then return true, and false otherwise.

The analysis of the algorithmic complexity is as follows: First, the number of loops will be bounded by \(O(\log N) \) because after \(M > 2 \), in each loop, we will multiply the number by two every time, so the number of loops will be terminated after \(\log_2 N \) steps. Then, in every loop, we will multiply the numbers \(x \) and \(M \), which is bounded by \(O(\log^2 N) \) by naive multiplication. Thus, the whole while loop will take \(O(\log^3 N) \). Lastly, the comparison between two numbers \(x \) and \(N \) will take \(O(\log N) \) time.

Thus, the whole algorithm takes \(O(\log^3 N) = O(n^3) \) time, which is polynomial.

(c) Given as input a positive integer \(N \), output True iff \(N = M^2 \) for some positive integer \(M \).

We will perform binary search for the value of \(x \) such that \(x^2 = N \). At the beginning of each iteration of the while loop, the invariant \(l \leq \sqrt{N} \leq h \) will be maintained. Since \(l \) and \(h \) are integers, and \(h - l \) is decreasing (see below), we will find \(\sqrt{N} \) if it is also an integer.

To analyze the run-time, the while loop will run for \(O(\log N) \) steps. Observe that \(h - l \) decreases by at least a half at the end of each iteration of the while loop. Since both \(l \) and \(h \) are integers, this process can go on at most \(\log_2 (h - l) + 1 = O(\log(N)) \) steps. During each iteration (lines 4-10), we compute the product of two integers each of which is at most \(N \). Hence, we can do this computation in \(O(\log^2 N) \) time. We also perform some comparisons and assignments, each of which only takes \(O(\log N) \) time. Thus the total time, is \(O(\log^3 N) \) time which is polynomial in \(n = \log N \).

(Extra) Lose All Scripted Responses. Improvisation Only

Let \(\text{FINITE} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is finite}\} \) and \(\text{TOTAL} = \{\langle M \rangle : M \text{ halts on all inputs}\} \).

Show that \(\text{TOTAL} \leq_T \text{FINITE} \).

Suppose that \(M_{\text{FINITE}} \) decides \(\text{FINITE} \).

We define a decider for \(\text{TOTAL} \) as follows, where \(<\) means lexicographically smaller.

```python
def M_TOTAL(<M>):
    <HELP> =
    """def HELP(w):
        for y <= w:
            M(y)
            ACCEPT"
    return not M_FINITE(<HELP>)
```

Proof of correctness:

Suppose \(M \) is total and halts on all inputs, then \(L(HELP) = \Sigma^* \), so \(M_{\text{FINITE}}(\langle HELP \rangle) \) will reject, as desired.

Suppose \(M \) is not total and let \(w \) be the lexicographically smallest string that \(M \) does not halt on. Then \(HELP \) will not accept any string lexicographically greater (or equal to) than \(w \), as \(M(w) \) will not halt. Thus, since there are only finitely many strings lexicographically smaller than \(w \), \(L(HELP) \) is finite. Thus, \(M_{\text{FINITE}}(\langle HELP \rangle) \) accepts, as desired.

(Extra) Asymptotically super sub

Name a function \(f(n) \) which is asymptotically super-polylogarithmic, i.e., \(f(n) = \Omega(\log^c n) \) for any constant \(c > 1 \), and at the same time asymptotically sub-polynomial, i.e., \(f(n) = O(n^\epsilon) \) for any
constant $\epsilon > 0$.

Let $f(n) = 2^{\log n}$.

- **WTS:** $\forall c > 1 : f(n) = \Omega(\log^c n)$
 Let $c > 1, d > 0$ be arbitrary numbers.
 Let $x = \log n$.

 $$\sqrt{x} = \Omega(\log x)$$

 Thus,
 $$\exists k : \forall x > k : \sqrt{x} \geq c \log x + \log(d)$$

 since \log is a strictly increasing positive function.
 Substituting in n:
 $$\sqrt{\log n} \geq c \log \log n + \log d = \log(d \log^c n)$$

 Consequently:
 $$2^{\sqrt{\log n}} \geq d \log^c n$$

 This proves $f(n) = \Omega(\log^c n)$.

- **WTS:** $\forall \epsilon > 0 : f(n) = O(n^\epsilon)$
 Let $\epsilon > 0, d > 0$ be arbitrary numbers.
 Observe, conversely to the above case that:

 $$\sqrt{\log n} = O(\log n)$$

 Thus,
 $$\sqrt{\log n} \leq \epsilon \log(n) + \log(d) = \log(dn^\epsilon)$$

 So if we exponentiate both sides:
 $$2^{\sqrt{\log n}} \leq dn^\epsilon$$

 Thus, we've proven $\forall \epsilon > 0 : f(n) = O(n^\epsilon)$