1. Let L be a language over the alphabet $\Sigma = \{0, 1\}$ that is defined recursively as follows:

- $\epsilon \in L$;
- $u, v \in L \implies 0uv \in L$;
- $u, v \in L \implies 1vu \in L$.

The only strings in L are the ones that can be constructed inductively by applying the above rules. Prove that L is the language consisting of all strings that have an equal number of 0 symbols and 1 symbols. In other words, if K denotes the language consisting of all strings with an equal number of 0’s and 1’s, then you need to show that $L = K$. To do this, you should argue $L \subseteq K$ and $K \subseteq L$.

2. A world-state in Game of Life consists of an assignment of “alive” or “dead” to each cell (x, y) in the infinite 2-d grid $\mathbb{Z} \times \mathbb{Z}$. Determine, with proof, whether the set of all possible world-states is countable.

3. Consider the set of functions $f : \mathbb{N} \to \mathbb{N}$ which: (i) are increasing (meaning $f(x) > f(y)$ whenever $x > y$); and, (ii) satisfy $f(n) \leq 2n$ for all $n \in \mathbb{N}$. Determine with proof whether this set is countable.

4. One can encode the alphabet $\Sigma_1 = \{0, 1, \sqcup, \#\}$ by the alphabet $\Sigma_2 = \{0, 1\}$ by applying the map $\sqcup \rightarrow 00$, $\# \rightarrow 01$, $0 \rightarrow 10$, $1 \rightarrow 11$. Let $L \subseteq \Sigma_1^*$, and let $L' \subseteq \Sigma_2^*$ be its “encoding”. Show: L is regular if and only if L' is regular.

5. Consider the following languages over the alphabet $\{a, b\}$:

$$L = \{a^m b^n : n, m \in \mathbb{N}, n - m \leq 251\},$$

$$K = \{a^m b^n : n, m \in \mathbb{N}, n + m \leq 251\}.$$

Show that one of these languages is regular and the other is not. For the proof of regularity, all you need to do is draw or describe a DFA; a proof of correctness is not required. For the proof of irregularity, present all the details.

6. Let’s say that a DFA D is “interesting” if it accepts at least one string x with $k \leq |x| \leq 2k$, where k denotes the number of states in D.

(a) Show that $L = \{(D) : D$ is interesting$\}$ is decidable.

(b) Show that D is interesting if and only if D accepts infinitely many strings.

7. Fix $\Sigma = \{a, b\}$. Given a word w, we let filter(w) denote w with its even-indexed characters removed. For example, filter(a) = a, filter(ab) = a, filter($abba$) = ab, and filter(ϵ) = ϵ. For a language $L \subseteq \Sigma^*$, define

$$\text{FILTER}(L) = \{\text{filter}(x) : x \in L\}.$$

Show that if L is regular, then so is $\text{FILTER}(L)$.
8. Fix $\Sigma = \{a, b\}$. For a language $L \subseteq \Sigma^*$, define

$$\text{DOUBLE}(L) = \{x \in \Sigma^* : \text{filter}(x) \in L\}.$$

Show that if L is regular, then so is $\text{DOUBLE}(L)$.

9. Consider the following TM called M, which has input alphabet $\{a\}$ and tape alphabet $\{a, \sqcup\}$.

![Diagram of TM]

Prove that M does not halt on input aaa. Your proof should use the notion of a configuration.

10. (a) We say that a language L is acceptable if there exists a Turing Machine M such that $M(x)$ accepts for all $x \in L$ and $M(x)$ either rejects or loops for all $x \not\in L$. Show that L is decidable if and only if L and $\overline{L} = \Sigma^* \setminus L$ are both acceptable.

(b) Recall that the language $\text{HALTS} = \{(M, x) : M \text{ is a TM and } M(x) \text{ halts}\}$ is undecidable. Show that HALTS is acceptable (and that therefore, the decidable languages are a strict subset of the recognizable languages).

(c) Show that HALTS is not acceptable.

(d) Show that $\{(M) : M \text{ is a TM and } \exists x \in \Sigma^* \text{ such that } M(x) \text{ halts}\}$ is acceptable.

(e) Show that every acceptable language L is reducible to HALTS.

11. (a) Fix a Turing Machine M with input alphabet Σ and consider the language $L_M = \{x \in \Sigma^* : M(x) \text{ halts}\}$. Is there an M such that L_M is decidable?

(b) Fix a string $x \in \Sigma^*$ and consider the language $L_x = \{(M) : M(x) \text{ halts}\}$. Is there an x such that L_x is decidable?

12. Recall that for $w \in \Sigma^*$, w^R denotes the reversal of w. For example $10111^R = 11101$. Show that

$$K = \{(M) : M \text{ is a TM which accepts } \langle M \rangle^R\}$$

is undecidable.

13. Let K be the following language:

$$K = \{(M) : M \text{ is a TM and } L(M) \text{ is finite or } L(M) = \Sigma^*\}.$$

Prove that K is undecidable.
14. Prove or give a counter-example to the following claim: Given any two functions \(f(n) \) and \(g(n) \), either \(f(n) = O(g(n)) \) or \(g(n) = O(f(n)) \).

15. (a) Draw a Turing Machine \(M \) which decides the language \(\{0^n1^m : n, m \in \mathbb{N}\} \).
 (b) Determine the running time function \(T_M(n) \) completely exactly.
 (c) Prove that \(T_M(n) = \Theta(n) \).
 (d) Although we rarely consider “best-case running time”, let’s do it in this problem. Define
 \[U_M(n) = \min_{\text{instances } x \text{ of length } n} \{ \# \text{ of steps } M \text{ takes on } x \}. \]
 Determine the function \(U_M(n) \) exactly. (Probably it will involve “cases”.)
 (e) Prove that \(U_M(n) = \Theta(1) \).

16. Let \(T(n) \) satisfy the following recurrence relation:
 \[T(1) = c, \quad T(n) \leq 3 \cdot T(n/5) + k \cdot n^4 \quad \text{for } n > 1, \]
 where \(c \) and \(k \) are some constants that don’t depend on \(n \). You can assume \(n \) is power of 5, i.e. \(n = 5^t \) for some \(t \in \mathbb{N} \).
 (a) Consider the recursion tree corresponding to the above recursive relation. Determine the total number of nodes in the tree, in terms of \(n \), using the \(\Theta(\cdot) \) notation. Prove your claim.
 (b) Prove a tight upper bound on \(T(n) \) using the big-O notation.

17. Describe a “linear-time reduction from multiplication to squaring”. That is, suppose you are given access to black-box that, given a number \(B \), returns \(B^2 \) to you. Show how to multiply two \(n \)-bit numbers using time \(O(n) \) plus at most a constant (like, one or two or three) number of calls to the squaring black-box.
 (The point of this problem is to illustrate that if you didn’t know an algorithm for doing faster-than-quadratic-time multiplication, and you were trying to discover such an algorithm, you could WLOG focus just on doing the special case of faster-than-quadratic-squaring. In fact, both Kolmogorov and Karatsuba knew this fact, and it helped Karatsuba discover his algorithm for multiplying two \(n \)-bit numbers in time \(O(n^{1.58}) \).)

18. Fix some \(0 < \epsilon < 1 \). Design a cake cutting algorithm for \(n \) players that finds an allocation \((A_1, \ldots, A_n) \) such that for all \(i = 1, \ldots, n-1 \) (all players except \(n \)), \(0 < V_i(A_i) \leq \epsilon \). Analyze the complexity of your algorithm in the Robertson-Webb model. You may assume that for any two distinct points \(x, y \in [0,1] \), and any player \(i \in N \), \(V_i([x,y]) > 0 \), that is, each player has a strictly positive value for any interval that is not a single point.