Recitation 4

Scan Reloaded

4.1 Announcements

- *BignumLab* has been released, and is due *Friday afternoon*. It’s worth 175 points.
- *RandomLab* will be released on Friday.
4.2 Implementation

Recall the implementation of \texttt{scan} for sequences of power-of-2 length. Note that we typically refer to line 7 as the \textit{contraction} step, line 8 as the \textit{recursive} step, and line 11 as the \textit{expansion} step.

\begin{algorithm}
\begin{algorithmic}
\Function{scan}{f \ b \ S}
\Case{$|S|$}
\Case{0} \Rightarrow (\langle \rangle, b)
\Case{1} \Rightarrow ((b), S[0])
\Case{n} \Rightarrow \let
\State val $S' = \langle f(S[2i], S[2i+1]) \mid 0 \leq i < n/2 \rangle$
\State val $(R, t) = \text{scan} \ f \ b \ S'$
\State fun $P(i) =$ \If{even(i)} \Then \Else{$f(R[\lfloor i/2 \rfloor], S[i-1])$}
\State $(\langle P(i) : 0 \leq i < n \rangle, t)$
\End
\End
\End
\end{algorithmic}
\caption{\texttt{scan}, assuming $|S|$ is a power of 2.}
\end{algorithm}

A diagram should help clear up any confusion. Consider $(\texttt{scan} + 0 \ \langle 1, 2, 3, 4, 5, 6, 7, 8 \rangle)$.
4.3 Cost Analysis

Since we so commonly use \texttt{scan} with a constant-time function argument, it is helpful to memorize that it has $O(n)$ work and $O(\log n)$ span in this case. But what about more complex functions? Let’s try \texttt{merge} as an example.

\begin{task}
\textbf{Task 4.2.} Analyze the work and span of \\
\texttt{scan (merge cmp) \{} S \\
assuming that $|S| = n$, $|x| \leq m$ for every $x \in S$, and \texttt{cmp} is constant-time. Give your answers as tight Big-O bounds in terms of n and m.
\end{task}

Recall that \texttt{(merge cmp (A, B))} requires $O(|A| + |B|)$ work and $O(\log |A| + \log |B|)$ span, and it produces a sequence of length $|A| + |B|$.

Our goal is to establish two recurrences $W(n, m)$ and $S(n, m)$. Let’s walk through the steps:

- **Contraction.** We perform $n/2$ applications of \texttt{merge}, each of which requires $O(m)$ work and $O(\log m)$ span. Therefore this step requires $O(nm)$ work and $O(\log m)$ span.
- **Recursion.** We recurse on a sequence of half the length. Each element in this sequence is now twice as large. Therefore this step requires $W(n/2, 2m)$ work and $S(n/2, 2m)$ span.
- **Expansion.** Consider the even and odd positions of the output separately.

 - The even positions remain unchanged from the recursive result; copying them over to the output incurs a cost of $O(n)$ work and $O(1)$ span.

 - The odd positions are determined by $n/2$ applications of \texttt{merge}. The inputs to these calls, however, are of varying size. Specifically, the \texttt{merge} which generates the $(2i + 1)^{th}$ position has inputs of size $2im$ and m, and therefore requires $O((i + 1)m)$ work and $O(\log((i + 1)m))$ span. We add these up for $0 \leq i < n/2$:

 \begin{align*}
 * \text{ Work: } & \sum_{i=0}^{n/2-1} O((i + 1)m) = O\left(m \sum_{j=1}^{n/2} j \right) = O(n^2m) \\
 * \text{ Span: } & \max_{i=0}^{n/2-1} O(\log((i + 1)m)) = O(\log(nm))
 \end{align*}

Therefore this step requires a total of $O(n^2m)$ work and $O(\log(nm))$ span.
We now have two recurrences to solve.

- **Work**: \(W(n, m) = W(n/2, 2m) + O(n^2 m) \).

 Counting from \(i = 0 \) at the top, the \(i \)th level of this recurrence has a cost of

 \[
 O \left(\left(\frac{n}{2^i} \right)^2 2^i m \right) = O \left(\frac{n^2 m}{2^i} \right)
 \]

 and therefore this recurrence is root dominated, giving us that

 \(W(n, m) \in O(n^2 m) \).

- **Span**: \(S(n, m) = S(n/2, 2m) + O(\log(nm)) \).

 The \(i \)th level of this recurrence has a cost of

 \[
 O \left(\log \left(\frac{n}{2^i} 2^i m \right) \right) = O(\log(nm))
 \]

 and therefore this recurrence is balanced. There are \(\log_2 n \) levels, giving us that

 \(S(n, m) \in O(\log n \cdot \log(nm)) = O(\log^2 n + \log n \cdot \log m) \).
4.4 Bonus Exercise: Factorials with Bignums

In this section, we write \(** \) for bignum multiplication and \(\pi \) for the bignum representation of \(x \). We’ll be using the same conventions here as in BignumLab.

Factorials quickly become too large to represent in a single 32-bit or 64-bit unsigned integer\(^1\). This makes them the perfect candidate for bignums, which can be arbitrarily large. Consider the following code, which computes the first \(n \) factorials (excluding \(0! \)):

\[
\text{Algorithm 4.3. Bignum Factorials.}
\]

\[
\text{fun factorials n = Seq.scanIncl ** } \langle i: 1 \leq i \leq n \rangle
\]

\[
\text{Exercise 4.4. Analyze the work of (factorials n). Note that you’ll first need to determine}
\]

\[1. \text{The work of } \pi ** \overline{\pi}, \text{ and}
\]

\[2. \text{The bit width of } \pi ** \overline{\pi}.
\]

The former is given by solving the recurrence given in BignumLab for multiplication, namely

\[
W(n) = 3 W \left(\frac{n}{2} \right) + O(n).
\]

The latter can be determined via a little bit of algebra. Note that the bit width of a number \(\pi \) is \(1 + \lfloor \log_2 x \rfloor \), assuming \(x \geq 1 \).

Warning: this is pretty hard.

\(^1\)With 32-bit unsigned integers, the largest factorial we can compute before encountering overflow is \(11! \). For 64-bits, it’s \(19! \).