15–210: Parallel and Sequential Data Structures and Algorithms

Practice Final

May 2017

- **Verify:** There are 19 pages in this examination, comprising 8 questions worth a total of 152 points. The last 2 pages are an appendix with costs of sequence, set and table operations.

- **Time:** You have 180 minutes to complete this examination.

- **Goes without saying:** Please answer all questions in the space provided with the question. Clearly indicate your answers.

- **Beware:** You may refer to your two double-sided 8½ × 11in sheets of paper with notes, but to no other person or source, during the examination.

- **Primitives:** In your algorithms you can use any of the primitives that we have covered in the lecture. A reasonably comprehensive list is provided at the end.

- **Code:** When writing your algorithms, you can use ML syntax but you don’t have to. You can use the pseudocode notation used in the notes or in class. For example you can use the syntax that you have learned in class. In fact, in the questions, we use the pseudo rather than the ML notation.

Sections

<table>
<thead>
<tr>
<th>Section</th>
<th>Time</th>
<th>Instructor 1</th>
<th>Instructor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9:30am - 10:20am</td>
<td>Andra/Charles</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>10:30am - 11:20am</td>
<td>Aashir/Anatol</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>12:30pm - 1:20pm</td>
<td>Oliver</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>12:30pm - 1:20pm</td>
<td>Rohan/Serena</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>1:30pm - 2:20pm</td>
<td>John/Christina</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>1:30pm - 4:20pm</td>
<td>Vivek/Teddy</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>3:30pm - 5:20pm</td>
<td>Ashwin/Sunny</td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Points</td>
<td>Score</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Binary Answers</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costs</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short Answers</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slightly Longer Answers</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semidynamic MST’s</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median ADT</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometric Coverage</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swap with Compare-and-Swap</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>152</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Question 1: Binary Answers (30 points)

(a) (2 points) TRUE or FALSE: The expressions $(\text{Seq.reduce } f \ I \ A)$ and $(\text{Seq.iterate } f \ I \ A)$ always return the same result as long as f is commutative.

(b) (2 points) TRUE or FALSE: The expressions $(\text{Seq.reduce } f \ I \ A)$ and $(\text{Seq.reduce } f \ I \ (\text{Seq.reverse } A))$ always return the same result if f is associative and commutative.

(c) (2 points) TRUE or FALSE: If a randomized algorithm has expected $O(n)$ work, then there exists some constant c such that the work performed is guaranteed to be at most cn.

(d) (2 points) TRUE or FALSE: Solving recurrences with induction can be used to show both upper and lower bounds?

(e) (2 points) TRUE or FALSE: Let p be an odd prime. In open address hashing with a table of size p and given a hash function $h(k)$, quadratic probing uses $h(k, i) = (h(k) + i^2) \mod p$ as the ith probe position for key k. If there is an empty spot in the table quadratic hashing will always find it.

(f) (2 points) TRUE or FALSE: Bottom-Up Dynamic Programming can be parallel, whereas the Top-Down version as described in class (ie, purely functional) is always sequential.

(g) (2 points) TRUE or FALSE: The height of any treap is $O(\log n)$.

(h) (2 points) TRUE or FALSE: It is possible to write insert for treaps that uses the split operation but not the join operation.

(i) (2 points) TRUE or FALSE: Dijkstra’s algorithm always terminates even if the input graph contains negative edge weights.

(j) (2 points) TRUE or FALSE: A $\Theta(n^2)$-work algorithm always takes longer to run than a $\Theta(n \log n)$-work algorithm.

(k) (2 points) TRUE or FALSE: We can improve the work efficiency of a parallel algorithm by using granularity control.

(l) (2 points) TRUE or FALSE: We can measure the work efficiency of a parallel algorithm by measuring the running time (work) of the algorithm on a single core, divided by the running time (work) of the sequential elision of the algorithm.

(m) (2 points) TRUE or FALSE: Some atomic read-modify-write operations such as compare-and-swap suffer from the ABA problem.

(n) (2 points) TRUE or FALSE: Race conditions are just when two concurrent threads write to the same location.

(o) (2 points) TRUE or FALSE: In a greedy scheduler a processor cannot sit idle if there is work to do.
Question 2: Costs (12 points)

(a) (6 points) Give tight asymptotic bounds (Θ) for the following recurrence using the tree method. Show your work.

\[W(n) = 2W(n/2) + n \log n \]

(b) (6 points) Check the appropriate column for each row in the following table:

<table>
<thead>
<tr>
<th>Recurrence</th>
<th>Root dominated</th>
<th>Leaf dominated</th>
<th>Balanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W(n) = 2W(n/2) + n^{1.5})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(W(n) = \sqrt{n}W(\sqrt{n}) + \sqrt{n})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(W(n) = 8W(n/2) + n^2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Question 3: Short Answers (26 points)
Answer each of the following questions in the spaces provided.

(a) (3 points) What simple formula defines the parallelism of an algorithm (in terms of work and span)?

(b) (3 points) Name two algorithms we covered in this course that use the greedy method.

c) (3 points) Given a sequence of key-value pairs \(A \), what does the following code do?
\[
\text{Table.map Seq.length (Table.collect A)}
\]

(d) (5 points) Consider an undirected graph \(G \) with unique positive weights. Suppose it has a minimum spanning tree \(T \). If we square all the edge weights and compute the MST again, do we still get the same tree structure? Explain briefly.

e) (3 points) What asymptotically efficient parallel algorithm/technique can one use to count the number of trees in a forest (tree and forest have their graph-theoretical meaning)? (Hint: the ancient saying of “can’t see forest from the trees” may or may not be of help.) Give the work and span for your proposed algorithm.

f) (3 points) What are the two ordering invariants of a Treap? (Describe them briefly.)

(g) (6 points) Is it the case that in a leftist heap the left subtree of a node is always larger than the right subtree. If so, argue why (briefly). If not, give an example.
Question 4: Slightly Longer Answers (20 points)

(a) (6 points) Certain locations on a straight pathway recently built for robotics research have to be covered with a special surface, so CMU hires a contractor who can build arbitrary length segments to cover these locations (a location is covered if there is a segment covering it). The segment between \(a\) and \(b\) (inclusive) costs \((b - a)^2 + k\), where \(k\) is a non-negative constant. Let \(k \geq 0\) and \(X = \langle x_0, \ldots, x_{n-1}\rangle\), \(x_i \in \mathbb{R}_+\), be a sequence of locations that have to be covered. Give an \(O(n^2)\)-work dynamic programming solution to find the cheapest cost of covering these points (all given locations must be covered). Be sure to specify a recursive solution, identify sharing, and describe the work and span in terms of the DAG.

(b) (7 points) Here is a slightly modified version of the algorithm given in class for finding the optimal binary search tree (OBST):

\[
\text{function OBST} \ (A) =
\]
\[
\text{let }
\]
\[
\text{function OBST'} \ (S, d) =
\]
\[
\text{if } |S| = 0 \text{ then } 0
\]
\[
\text{else } min_{i \in \{1, \ldots, |S|\}} \left(\text{OBST'} \ (S_{1, i-1}, d + 1) + d \times p(S_i) + \text{OBST'} \ (S_{i+1, |S|}, d + 1)\right)
\]
\[
\text{in }
\]
\[
\text{OBST'} \ (A, 1)
\]

Recall that \(S_{i,j}\) is the subsequence \(\langle S_i, S_{i+1}, \ldots, S_j\rangle\) of \(S\). For \(|A| = n\), place an asymptotic upper bound on the number of distinct arguments \(\text{OBST'}\) will have (a tighter bound will get more credit).

(c) (7 points) Given \(n\) line segments in 2 dimensions, the 3-intersection problem is to determine if any three of them intersect at the same point. Explain how to do this in \(O(n^2)\) work and \(O(\log^2 n)\) span. You can assume the lines are given with integer endpoints (i.e. you can do exact arithmetic and not worry about roundoff errors).
Question 5: Semidynamic MST’s (20 points)

Recall that a minimum spanning forest (MSF) of a graph is a collection of minimum spanning trees, one for each connected component of the graph.

You are given a data type called DynamicForest that supports the following operations on undirected, weighted forests F. Let (u, v, w) denote an undirected edge between u and v with weight w. Throughout this question, you may assume that edge weights are unique.

For a forest F with n vertices, each of the following operations has $O(\log n)$ work and span, except for init, which has $O(n)$ work.

- **init V**: Initialize and return a forest with vertices V and no edges.
- **maxEdge $F (u, v)$**: Return $(\text{SOME } e)$ where e is the heaviest (largest weight) edge on the path from u to v in F if such e exists, return NONE if no such e exists. For example, if u and v are not connected, then the function returns NONE.
- **deleteEdge $F (u, v)$**: If there is an edge between u and v in F, delete it and return the new forest. Otherwise, return F unmodified.
- **insertEdge $F (u, v, w)$**: Assuming u and v are not already connected in F, insert the edge (u, v, w) and return the updated forest. If u and v are connected, then this function immediately aborts and initiates the apocalypse. Do not allow this to happen.

In all parts of this problem, you will be graded on clarity in addition to correctness, so think before you write.

(a) (5 points) Argue in ≤ 4 clear sentences that, given any cycle in a graph, the maximum edge on the cycle cannot be in the MST. **Note**: If you can’t get this, you may still use this fact in the rest of the problem.
(b) (7 points) Write the following function (in SML or pseudocode):

```plaintext
extendMSF : DynamicForest * edge → DynamicForest
```

Given F which is the MSF of the graph (V, E), `extendMSF $(F, (u, v, w))$` should return the MSF of the graph $(V, E \cup \{(u, v, w)\})$. Your implementation should have $O(\log |V|)$ work and span.

```plaintext
fun extendMSF (F, (u,v,w)) =
  case _____________________________ of
    NONE ⇒ _____________________________
    SOME _______________ ⇒
      _____________________________
      _____________________________
      _____________________________
      _____________________________
```

(c) (3 points) Argue in just a few sentences why your answer to the previous part is correct.

(d) (5 points) Write one line of code to compute the minimum spanning forest of a graph (V, E). Your implementation should have $O(|V| + |E| \log |V|)$ work and should use `extendMSF`. You may assume E is represented as an edge sequence.

```python
fun makeMSF (V, E) =
```


```
Question 6: Median ADT  (12 points)

The median of a set $C$, denoted by $\text{median}(C)$, is the value of the $\lceil n/2 \rceil$-th smallest element (counting from 1). For example,

- $\text{median}\{1, 3, 5, 7\} = 3$
- $\text{median}\{4, 2, 9\} = 4$

In this problem, you will implement an abstract data type $\text{medianT}$ that maintains a collection of integers (possibly with duplicates) and supports the following operations:

- $\text{insert}(C, v) : \text{medianT} \times \text{int} \to \text{medianT}$ add the integer $v$ to $C$.
- $\text{median}(C) : \text{medianT} \to \text{int}$ return the median value of $C$.
- $\text{fromSeq}(S) : \text{int Seq.t} \to \text{medianT}$ create a $\text{medianT}$ from $S$.

Throughout this problem, let $n$ denote the size of the collection at the time, i.e., $n = |C|$.

(a) (5 points) Describe how you would implement the $\text{medianT}$ ADT using (balanced) binary search trees so that $\text{insert}$ and $\text{median}$ take $O(\log n)$ work and span.

(b) (7 points) Using some other data structure, describe how to improve the work to $O(\log n)$, $O(1)$ and $O(|S|)$ for the three operations respectively. The $\text{fromSeq}$ $S$ function needs to run in $O(\log^2 |S|)$ expected span and the work can be expected case. (Hint: think about maintaining the median, the elements less than the median, and the elements greater than the median separately.)
Question 7: Geometric Coverage  (12 points)
For points \( p_1, p_2 \in \mathbb{R}^2 \), we say that \( p_1 = (x_1, y_1) \) covers \( p_2 = (x_2, y_2) \) if \( x_1 \geq x_2 \) and \( y_1 \geq y_2 \).
Given a set \( S \subseteq \mathbb{R}^2 \), the geometric cover number of a point \( q \in \mathbb{R}^2 \) is the number of points in \( S \) that \( q \) covers. Notice that by definition, every point covers itself, so its cover number must be at least 1.

In this problem, we’ll compute the geometric cover number for every point in a given sequence. More precisely:

**Input:** a sequence \( S = \langle s_1, \ldots, s_n \rangle \), where each \( s_i \in \mathbb{R}^2 \) is a 2-d point.
**Output:** a sequence of pairs each consisting of a point and its cover number. Each point must appear exactly once, but the points can be in any order.

Assume that we use the ArraySequence implementation for sequences.

(a) (4 points) Develop a brute-force solution \texttt{gcnBasic} (in pseudocode or Standard ML). Despite being a brute-force solution, your solution should not do more work than \( O(n^2) \).

(b) (4 points) In words, outline an algorithm \texttt{gcnImproved} that has \( O(n \log n) \) work. You may assume an implementation of OrderedTable in which \texttt{split}, \texttt{join}, and \texttt{insert} have \( O(\log n) \) cost (i.e., work and span), and \texttt{size} and \texttt{empty} have \( O(1) \) cost.
(c) (4 points) Show that the work bound cannot be further improved by giving a lower bound for the problem.
Question 8: Swap with Compare-and-Swap  (20 points)

(a) (10 points) Write a function `swap` that takes two memory locations `la` and `lb` and atomically swaps their values using compare-and-swap. Recall that compare-and-swap takes a memory location `ℓ`, an old value `v`, and a new value `w` and atomically replaces the contents of `ℓ` with `w` if the contents of `ℓ` is equal to `v`.

```java
long lock = 0;

function swap-with-cas (la: long, lb: long) =
```
(b) (10 points) Does your algorithm suffer from the ABA problem? If so, explain how it does, and whether the problem affects the correctness of your algorithm. If so, then can you describe briefly a way to fix the problem (no pseudo-code needed)?
Appendix: Library Functions

signature SEQUENCE =
  sig
    type 'a t
    type 'a seq = 'a t
    type 'a ord = 'a * 'a -> order
  datatype 'a listview = NIL | CONS of 'a * 'a seq
  datatype 'a treeview = EMPTY | ONE of 'a | PAIR of 'a seq * 'a seq
 exception Range
 exception Size

 val nth : 'a seq -> int -> 'a
 val length : 'a seq -> int
 val toList : 'a seq -> 'a list
 val toString : ('a -> string) -> 'a seq -> string
 val equal : ('a * 'a -> bool) -> 'a seq * 'a seq -> bool

 val empty : unit -> 'a seq
 val singleton : 'a -> 'a seq
 val tabulate : (int -> 'a) -> int -> 'a seq
 val fromList : 'a list -> 'a seq

 val rev : 'a seq -> 'a seq
 val append : 'a seq * 'a seq -> 'a seq
 val flatten : 'a seq seq -> 'a seq

 val filter : ('a -> bool) -> 'a seq -> 'a seq
 val map : ('a -> 'b) -> 'a seq -> 'b seq
 val zip : 'a seq * 'b seq -> ('a * 'b) seq
 val zipWith : ('a * 'b -> 'c) -> 'a seq * 'b seq -> 'c seq

 val enum : 'a seq -> (int * 'a) seq
 val filterIdx : (int * 'a -> bool) -> 'a seq -> 'a seq
 val mapIdx : (int * 'a -> 'b) -> 'a seq -> 'b seq
 val update : 'a seq * (int * 'a) -> 'a seq
 val inject : 'a seq * (int * 'a) seq -> 'a seq

 val subseq : 'a seq -> int * int -> 'a seq
 val take : 'a seq -> int -> 'a seq
 val drop : 'a seq -> int -> 'a seq
 val splitHead : 'a seq -> 'a listview
 val splitMid : 'a seq -> 'a treeview

 val iterate : ('b * 'a -> 'b) -> 'b -> 'a seq -> 'b
 val iteratePrefixes : ('b * 'a -> 'b) -> 'b -> 'a seq -> 'b seq * 'b
 val iteratePrefixesIncl : ('b * 'a -> 'b) -> 'b -> 'a seq -> 'b seq
 val reduce : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a
 val scan : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a seq * 'a
 val scanIncl : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a seq

 val sort : 'a ord -> 'a seq -> 'a seq
 val merge : 'a ord -> 'a seq * 'a seq -> 'a seq
 val collect : 'a ord -> ('a * 'b) seq -> ('a * 'b seq) seq
val collate : 'a ord -> 'a seq ord
val argmax : 'a ord -> 'a seq -> int
val $ : 'a -> 'a seq
val % : 'a list -> 'a seq
end

<table>
<thead>
<tr>
<th>ArraySequence</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>empty ()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>singleton a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>length s</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>nth s i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>subseq s (i, len)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tabulate f n</td>
<td>$O\left(\sum_{i=0}^{n-1} W_i\right)$</td>
<td>$O\left(\max_{i=0}^{n-1} S_i\right)$</td>
</tr>
<tr>
<td>map f s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zipWith f (s, t)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>reduce f b s</td>
<td>$O(n)$</td>
<td>$O(\lg n)$</td>
</tr>
<tr>
<td>scan f b s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>filter p s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>flatten s</td>
<td>$O\left(\sum_{i=0}^{n-1} (1 +</td>
<td>s[i]</td>
</tr>
<tr>
<td>sort cmp s</td>
<td>$O(n \lg n)$</td>
<td>$O(\lg^2 n)$</td>
</tr>
<tr>
<td>merge cmp (s, t)</td>
<td>$O(m + n)$</td>
<td>$O(\lg (m + n))$</td>
</tr>
<tr>
<td>append (s, t)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15–210 Practice Final 16 of 19 May 2017
signature TABLE =
sig
  structure Key : EQKEY
  structure Seq : SEQUENCE

type 'a t
  type 'a table = 'a t

structure Set : SET where Key = Key and Seq = Seq

val size : 'a table -> int
val domain : 'a table -> Set.t
val range : 'a table -> 'a Seq.t
val toString : ('a -> string) -> 'a table -> string
val toSeq : 'a table -> (Key.t * 'a) Seq.t

val find : 'a table -> Key.t -> 'a option
val insert : 'a table * (Key.t * 'a) -> 'a table
val insertWith : ('a * 'a -> 'a) -> 'a table * (Key.t * 'a) -> 'a table
val delete : 'a table * Key.t -> 'a table

val empty : unit -> 'a table
val singleton : Key.t * 'a -> 'a table
val tabulate : (Key.t -> 'a) -> Set.t -> 'a table
val collect : (Key.t * 'a) Seq.t -> 'a Seq.t table
val fromSeq : (Key.t * 'a) Seq.t -> 'a table

val map : ('a -> 'b) -> 'a table -> 'b table
val mapKey : (Key.t * 'a -> 'b) -> 'a table -> 'b table
val filter : ('a -> bool) -> 'a table -> 'a table
val filterKey : (Key.t * 'a -> bool) -> 'a table -> 'a table

val reduce : ('a * 'a -> 'a) -> 'a -> 'a table -> 'a
val iterate : ('b * 'a -> 'b) -> 'b -> 'a table -> 'b
val iteratePrefixes : ('b * 'a -> 'b) -> 'b -> 'a table -> ('b table * 'b)

val union : ('a * 'a -> 'a) -> ('a table * 'a table) -> 'a table
val intersection : ('a * 'b -> 'c) -> ('a table * 'b table) -> 'c table
val difference : 'a table * 'b table -> 'a table

val restrict : 'a table * Set.t -> 'a table
val subtract : 'a table * Set.t -> 'a table

val $ : (Key.t * 'a) -> 'a table
end
signature SET =

sig

  structure Key : EQKEY
  structure Seq : SEQUENCE

  type t
  type set = t

  val size : set -> int
  val toString : set -> string
  val toSeq : set -> Key.t Seq.t

  val empty : unit -> set
  val singleton : Key.t -> set
  val fromSeq : Key.t Seq.t -> set

  val find : set -> Key.t -> bool
  val insert : set * Key.t -> set
  val delete : set * Key.t -> set

  val filter : (Key.t -> bool) -> set -> set

  val reduceKey : (Key.t * Key.t -> Key.t) -> Key.t -> set -> Key.t
  val iterateKey : ('a * Key.t -> 'a) -> 'a -> set -> 'a

  val union : set * set -> set
  val intersection : set * set -> set
  val difference : set * set -> set

  val $ : Key.t -> set
end
<table>
<thead>
<tr>
<th><strong>MkTreapTable</strong></th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>size $T$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>filter $f T$</td>
<td>$\sum_{(k \rightarrow v) \in T} W(f(v))$</td>
<td>$\lg</td>
</tr>
<tr>
<td>map $f T$</td>
<td>$\sum_{k \in X} W(f(k))$</td>
<td>$\max_{k \in X} S(f(k))$</td>
</tr>
<tr>
<td>tabulate $f X$</td>
<td>$\sum_{k \in X} W(f(k))$</td>
<td>$\max_{k \in X} S(f(k))$</td>
</tr>
<tr>
<td>reduce $f b T$</td>
<td>$O(</td>
<td>T</td>
</tr>
<tr>
<td>insertWith $f (T,(k,v))$</td>
<td>$O(\lg</td>
<td>T</td>
</tr>
<tr>
<td>find $T k$</td>
<td>$O(\lg</td>
<td>T</td>
</tr>
<tr>
<td>delete $(T,k)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>domain $T$</td>
<td>$O(</td>
<td>T</td>
</tr>
<tr>
<td>range $T$</td>
<td>$O(</td>
<td>T</td>
</tr>
<tr>
<td>toSeq $T$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>collect $S$</td>
<td>$O(</td>
<td>S</td>
</tr>
<tr>
<td>fromSeq $S$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For each argument pair $(A, B)$ below, let $n = \max(|A|, |B|)$ and $m = \min(|A|, |B|)$.

<table>
<thead>
<tr>
<th><strong>MkTreapTable</strong></th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>union $f (X,Y)$</td>
<td>$O(m \lg (\frac{n+m}{m}))$</td>
<td>$O(\lg (n + m))$</td>
</tr>
<tr>
<td>intersection $f (X,Y)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>difference $(X,Y)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>restrict $(T,X)$</td>
<td>$O(m \lg (\frac{n+m}{m}))$</td>
<td>$O(\lg (n + m))$</td>
</tr>
<tr>
<td>subtract $(T,X)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>