last time

- Sorting a list of integers
- Specifications and proofs
 - *helper functions* that really help
principles

• Every function needs a spec
• Every spec needs a proof
• Recursive functions need inductive proofs
 • Learn to pick an appropriate method...
 • Choose helper functions wisely!

proof of msort was easy, because of split and merge
so far

- **sorting** for integer lists
- **specifications** and **correctness**
- … but what about **efficiency**?

work? span?

Before Work After Work
work

work is number of evaluation steps, assuming a *sequential* processor

- For *dependent* sub-expressions, **add** the work

 - *dependent*: one gets evaluated **before** the other

\[
W(e_1 + e_2) = W(e_1) + W(e_2)
\]

\[
W(\text{if } e_0 \text{ then } e_1 \text{ else } e_2) = W(e_0) + \max(W(e_1), W(e_2))
\]
span

span is the *number of evaluation steps*, assuming *unlimited parallelism*

- For *dependent* sub-expressions, *add* the span
- For *independent* sub-expressions, *max* the span

\[
\text{span} = \max(W(f \ x), W(f \ y))
\]

\[
\text{work} = W(f \ x) + W(f \ y)
\]
work, eggs, bacon and spam

work is the number of evaluation steps, assuming sequential processing

span is the number of evaluation steps, assuming unlimited parallelism

span is always \leq work

For sequential code, span = work
msort L = \textbf{let} \textbf{val} (A, B) = split L \textbf{in}
merge (msort A, msort B) \textbf{end}

when length L > 0

Let $W_{msort}(n) = \text{work of} \ msort\ L \ \text{when} \ \text{length} \ L = n$

$W_{msort}(n) = W_{split}(n) + 2W_{msort}(n \ \text{div} \ 2) + W_{merge}(n)$

$W_{msort}(n) = O(n) + 2W_{msort}(n \ \text{div} \ 2)$

$W_{msort}(n) \ \text{is} \ O(n \ \text{log} \ n)$
• `msort(L)` does $O(n \log n)$ work, where n is the length of L

• List operations are inherently *sequential*

 • $e_1 :: e_2$ evaluates e_1 first, then e_2

 • *split* and *merge* are not easily *parallelizable*

• We *could* use parallel evaluation in `msort(L)` for the recursive calls to `msort A` and `msort B`

How would this affect runtime?
Let $S_{msort}(n) = \text{span of sort } L \text{ when length } L = n$

$$S_{msort}(n) = S_{split}(n) + S_{msort}(n \text{ div } 2) + S_{merge}(n)$$

$$S_{msort}(n) = \Omega(n) + S_{msort}(n \text{ div } 2)$$

$S_{msort}(n)$ is $\Theta(n)$
work and span

\[W_{\text{msort}}(n) = O(n) + 2W_{\text{msort}}(n \div 2) \]

\(W_{\text{msort}}(n) \) is \(O(n \log n) \)

\[S_{\text{msort}}(n) = O(n) + S_{\text{msort}}(n \div 2) \]

\(S_{\text{msort}}(n) \) is \(O(n) \)

\(O(n) \subset O(n \log n) \)

mergesort
is
potentially
worth parallelizing
summary

• \texttt{msort(L)} has \(O(n \log n)\) work, \(O(n)\) span

• So the potential \textit{speed-up} factor from parallel evaluation is \(O(\log n)\)

\[\text{... \textit{in principle}, we can speed up mergesort on lists by a factor of } \log n\]

\[\text{To do any better, we need a different data structure...}\]
next

Trees are better than lists for parallel evaluation

• Sorting a *tree*
 • Specifications and proofs
 • Asymptotic analysis

 Insertion
 “Parallel” Mergesort
int trees

datatype tree = Empty | Node of tree * int * tree

• A user-defined type named tree
• With constructors Empty and Node

 Empty : tree
 Node : tree * int * tree -> tree
tree values
An inductive definition

A tree value is either Empty
or has the form Node(t₁, x, t₂),
where t₁ and t₂ are tree values and x is an integer.

Contrast with integer lists:

A list value is either nil
or has the form x::L,
where L is a list value and x is an integer.
structural induction

To prove: For all tree values t, $P(t)$ holds by structural induction on t

- **Base case:** Prove $P(\text{Empty})$.

- **Inductive case:**
 Assume Induction Hypothesis: $P(t_1)$ and $P(t_2)$.
 Prove $P(\text{Node}(t_1, x, t_2))$, for all integers x.

That’s enough! Why?

Contrast with structural induction for lists
tree patterns

<table>
<thead>
<tr>
<th>pattern</th>
<th>tree values that match</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty</td>
<td>an empty tree</td>
</tr>
<tr>
<td>Node(_, _, _)</td>
<td>a non-empty tree</td>
</tr>
<tr>
<td>Node(Empty, _, Empty)</td>
<td>a tree with one node</td>
</tr>
<tr>
<td>Node(_, 42, _)</td>
<td>a tree with 42 at root</td>
</tr>
</tbody>
</table>
patterns
match values

Empty matches \(t \) iff \(t \) is Empty

Node\((p_1, p, p_2)\) matches \(t \) iff

\(t \) is Node\((t_1, v, t_2)\) such that

\(p_1 \) matches \(t_1 \), \(p \) matches \(v \), \(p_2 \) matches \(t_2 \)

and combines all the bindings

Node\((A, x, B)\) matches

and binds \(x \) to 3,
\(A \) to Node\((\text{Empty},4,\text{Empty})\)
\(B \) to Node\((\text{Empty},2,\text{Empty})\)
fun Leaf(x:int):tree = Node(Empty, x, Empty)

fun Full(x:int, n:int):tree =
 if n=0 then Empty
 else
 let
 val T = Full(x, n-1)
 in
 Node(T, x, T)
 end
fun size Empty = 0
 | size (Node(t1, _, t2)) = size t1 + size t2 + 1

Uses tree patterns
Recursion is structural

Easy to prove by structural induction that for all trees t,
size(t) = a non-negative integer

the number of nodes
size matters

• Size is always non-negative

\[
\text{size}(t) \geq 0
\]

• Children have smaller size

\[
\text{size}(t_i) < \text{size}(\text{Node}(t_1, x, t_2))
\]

• Many recursive functions on trees make recursive calls on trees with smaller size.

 • Use \textit{induction on size} to prove correctness.
depth
(or *height*)

```
fun depth Empty = 0
  | depth (Node(t1, _, t2)) = Int.max(depth t1, depth t2) + 1
```

Can prove by structural induction that for all trees t,

$$\text{depth}(t) = \text{a non-negative integer}$$

the length of longest path from root to a leaf node
depth matters

- For all trees t, $\text{depth}(t) \geq 0$.
- Children have smaller depth
 \[
 \text{depth}(t_i) < \text{depth}(\text{Node}(t_1, x, t_2))
 \]
- Many recursive functions on trees make recursive calls on trees with smaller depth.
- Can use induction on depth to prove properties or analyze efficiency.
exercises

• Prove that for all $n \geq 0$

\[
\text{size}(\text{Full}(42, n)) = 2^n - 1 \\
\text{depth}(\text{Full}(42, n)) = n
\]

\[
\text{Full}(42, 3) \\
\text{size is 7} \\
\text{depth is 3}
\]
in-order traversal

\[\text{inord : tree} \rightarrow \text{int list} \]

\[
\begin{align*}
\text{fun } \text{inord Empty} & = [] \\
\text{inord (Node(t1, x, t2))} & = \text{inord t1} \ @ \ (x :: \text{inord t2})
\end{align*}
\]

\[\text{left before root before right} \]

inord \(t \) = the in-order traversal list for \(t \)
inord

```plaintext
fun inord Empty = [ ]
  | inord (Node(t1, x, t2)) = inord t1 @ (x :: inord t2)
```

For all trees T,

```
length (inord T) = size T
```

prove by structural induction on T

For all lists L₁, L₂ of the same type

```
length (L₁ @ L₂) = length L₁ + length L₂
```

prove by structural induction on L₁
work analysis

fun inord Empty = []
| inord (Node(t1, x, t2)) = inord t1 @ (x :: inord t2)

• Let $W_{\text{inord}}(n)$ be the work to evaluate $\text{inord}(T)$ when T is a *full binary tree* of depth n
 \[
 \text{depth}(T) = n, \text{size}(T) = 2^n - 1
 \]
 \[
 W_{\text{inord}}(0) = 1
 \]
 \[
 W_{\text{inord}}(n) = 2W_{\text{inord}}(n-1) + O(2^n), \text{ for } n > 0
 \]
 \[
 W_{\text{inord}}(n) \text{ is } O(n2^n)
 \]

if $T = \text{Node}(A, x, B)$ is full and depth$(T) = n$, then
 \[
 \text{size}(A) = \text{size}(B) = 2^{n-1} - 1
 \]

work for $L_1@L_2$ is $O(\text{length } L_1)$
faster inord

inorder : tree * int list -> int list

fun inorder (Empty, L) = L
| inorder (Node(t1, x, t2), L) = inorder (t1, x :: inorder (t2, L))

Theorem

For all trees T, integer lists L,
inorder (T, L) = (inord T) @ L

The work for inorder(T, L), when T is a full tree of depth n, is O(2^n)
fun all (p : int -> bool, T : tree) : bool =
case T of
 Empty => true
| Node(A, x, B) =>
 (p x) andalso all (p, A) andalso all (p, B)

REQUIRES p is total

ENSURES all (p, T) = true iff
 every integer in T satisfies p
Empty is a sorted tree

Node(t₁, x, t₂) is a sorted tree iff

- every integer in t₁ is \(\leq x \),
- every integer in t₂ is \(\geq x \),
- and t₁, t₂ are sorted trees

Theorem

t is a sorted tree iff

\[\text{inord}(t) \text{ is a sorted list} \]
fun is_sorted (T : tree) : bool = case T of
 Empty => true
| Node(A, x, B) =>
 all (fn y => y <= x, A) andalso
 all (fn y => y >= x, B) andalso
 is_sorted A andalso is_sorted B

is_sorted T = true iff
T is a sorted tree
balanced trees

• Empty is size-balanced
• Node(A, x, B) is size-balanced iff
 \[|\text{size}(A) - \text{size}(B)| \leq 1\]
 and A, B are size-balanced

• Empty is depth-balanced
• Node(A, x, B) is depth-balanced iff
 \[|\text{depth}(A) - \text{depth}(B)| \leq 1\]
 and A, B are depth-balanced
fun takedrop (0, L) = ([], L)
| takedrop (n, x::L) = let
| | val (A, B) = takedrop (n-1, L)
| | in
| | (x::A, B)
| end

fun list2tree [] = Empty
| list2tree [x] = Node(Empty, x, Empty)
| list2tree L = let
| | val n = length L
| | val (A, x::B) = takedrop (n div 2, L)
| | in
| | Node(list2tree A, x, list2tree B)
| end
specs

takedrop : int * int list -> int list * int list
REQUIRES 0 <= n <= length L
ENSURES takedrop (n, L) = (A, B) such that
L = A@B and length A = n

list2tree : int list -> tree
ENSURES
list2tree L = a size-balanced tree T
containing the integers from L

list2tree : int list -> tree
ENSURES
list2tree L = a size-balanced tree T
such that inord(T) = L
trees >> lists?

- Representing a collection of integers as a (balanced) tree may yield a parallel speed-up
- Using a sorted (and balanced) tree may even support faster sequential code
- Using lists, even sorted lists, only allows sequential code, and precludes parallelism
- Badly balanced trees are no better than lists!
fun mem (x, []) = false
| mem (x, y::L) = (x = y) orelse mem (x, L)

REQUIRES true
ENSURES mem (x, L) = true iff x is in L

W_{\text{mem}}(x, L) is O(length L)

Worst case: when x is not in L
or x is last element of L

S_{\text{mem}}(x, L) is also O(length L)
fun mem (x, []) = false \\
| mem (x, y::L) = case Int.compare(x, y) of \\
| LESS => false \\
| EQUAL => true \\
| GREATER => mem (x, L)

REQUIRES L is a sorted list
ENSURES mem (x, L) = true iff x is in L

\[W_{\text{mem}}(x, L) \text{ is } O(\text{length } L) \]

Worst case: when x is > all of L…

\[S_{\text{mem}}(x, L) \text{ is also } O(\text{length } L) \]
fun mem (x, Empty) = false
| mem (x, Node(A, y, B)) =
 (x = y) orelse mem (x, A) orelse mem (x, B)

REQUIRES T is a tree
ENSURES mem (x, T) = true iff x is in T

$W_{\text{mem}}(x, T)$ is $O(\text{size } T)$
Worst case: when x is not in T
 or x is inorder-last element of T

$S_{\text{mem}}(x, T)$ is also $O(\text{size } T)$
fun mem (x, Empty) = false
| mem (x, Node(A, y, B)) =
 (x = y) orelse
 let
 val (a, b) = (mem (x, A), mem (x, B))
 in
 a orelse b
 end

\[W_{\text{mem}}(x, T) \text{ is } O(\text{size } T) \]
\[S_{\text{mem}}(x, T) \text{ is } O(\text{depth } T) \]
fun mem (x, Empty) = false
| mem (x, Node(A, y, B)) = case Int.compare(x, y) of
| LESS => mem(x, A)
| EQUAL => true
| GREATER => mem (x, B)

REQUIRES T is a sorted tree
ENSURES mem (x, T) = true iff x is in T

\[W_{mem}(x, T) \text{ is } O(\text{depth } T) \]
\[S_{mem}(x, T) \text{ is } O(\text{depth } T) \]
trees >> lists?

- Representing a collection of integers as a *balanced* tree may yield a *parallel* speed-up.
- Using a *sorted* (and *balanced*) tree may even support faster *sequential* code.
- Using lists, even sorted lists, only allows *sequential* code, and precludes parallelism.
- Badly balanced trees are no better than lists!
sorting a tree

- If the tree is Empty, do nothing
- Otherwise
 (recursively) sort the two children, then
 merge the sorted children, then
 insert the root value

We’ll design helpers to insert and merge

merge will also need a helper to split a tree in two
inserting in a tree

Ins : int * tree -> tree
REQUIRES t is a sorted tree
ENSURES Ins(x,t) is a sorted tree consisting of x and all of t

fun Ins (x, Empty) = Node(Empty, x, Empty)
| Ins (x, Node(t1, y, t2)) =
 case compare(x, y) of
 GREATER => Node(t1, y, Ins(x, t2))
 _ => Node(Ins(x, t1), y, t2)

(contrast with list insertion)
inserting in a list

\[
\text{ins} : \text{int} \times \text{int list} \to \text{int list}
\]

\[
\text{fun} \ \text{ins} \ (x, \ [\]) = [x] \\
| \ \text{ins} \ (x, \ y::L) = \\
\text{case} \ \text{compare}(x, \ y) \ \text{of} \\
\text{GREATER} \Rightarrow y::\text{ins}(x, \ L) \\
\text{_<_>} \Rightarrow x::y::L
\]

For all sorted integer lists L,
\[
\text{ins}(x, \ L) = \text{a sorted permutation of } x::L.
\]
fun Ins (x, Empty) = Node(Empty, x, Empty)
| Ins (x, Node(t1, y, t2)) =
 case compare(x, y) of
 GREATER => Node(t1, y, Ins(x, t2))
| _ => Node(Ins(x, t1), y, t2)

\[
\begin{array}{c}
\text{Ins}(4, 3) \\
\text{Node(1, 6, Node(2, 5, Empty))}
\end{array}
\]

\[
\begin{array}{c}
\text{Ins}(4, 6) \\
\text{Node(1, Node(2, 5, Empty), Empty)}
\end{array}
\]

\[
\begin{array}{c}
\text{Ins}(4, 5) \\
\text{Node(1, Node(2, Node(6, Empty), Empty), Empty)}
\end{array}
\]
value equations

\[
\begin{align*}
\text{Ins}(x, \text{Empty}) &= \text{Node}(\text{Empty}, x, \text{Empty}) \\
\text{Ins}(x, \text{Node}(t_1, y, t_2)) &= \text{Node}(t_1, y, \text{Ins}(x, t_2)) \quad \text{if } x > y \\
&= \text{Node}(\text{Ins}(x, t_1), y, t_2) \quad \text{if } x \leq y
\end{align*}
\]

These equations hold, for all integer values \(x, y\) and all tree values \(t_1, t_2\) by definition of Ins.

\[
\text{Ins}(4, 3) = \begin{array}{c}
1 \\
_ \\
_ \\
_ \\
_ \\
_ \\
. \\
. \\
. \\
. \\
. \\
. \\
\end{array}
= \begin{array}{c}
1 \\
_ \\
_ \\
_ \\
_ \\
_ \\
. \\
. \\
. \\
. \\
. \\
\end{array}
= \begin{array}{c}
1 \\
_ \\
_ \\
_ \\
_ \\
_ \\
. \\
. \\
. \\
. \\
. \\
\end{array}
= \begin{array}{c}
3 \\
_ \\
_ \\
_ \\
_ \\
_ \\
. \\
. \\
. \\
. \\
. \\
\end{array}
= \begin{array}{c}
1 \\
_ \\
_ \\
_ \\
_ \\
_ \\
. \\
. \\
. \\
. \\
. \\
\end{array}
= \begin{array}{c}
6 \\
_ \\
_ \\
_ \\
_ \\
_ \\
. \\
. \\
. \\
. \\
. \\
\end{array}
= \begin{array}{c}
2 \\
_ \\
_ \\
_ \\
_ \\
_ \\
. \\
. \\
. \\
. \\
. \\
\end{array}
= \begin{array}{c}
5 \\
_ \\
_ \\
_ \\
_ \\
_ \\
. \\
. \\
. \\
. \\
. \\
\end{array}
= \begin{array}{c}
4 \\
_ \\
_ \\
_ \\
_ \\
_ \\
. \\
. \\
. \\
. \\
. \\
\end{array}
= \begin{array}{c}
T \text{ sorted} \\
_ \\
_ \\
_ \\
_ \\
_ \\
. \\
. \\
. \\
. \\
. \\
\end{array}
= \begin{array}{c}
\text{Ins}(4, T) \text{ sorted} \\
_ \\
_ \\
_ \\
_ \\
_ \\
. \\
. \\
. \\
. \\
. \\
\end{array}
\]
merging trees

Merge : tree * tree -> tree

REQUIRES t_1 and t_2 are sorted trees

ENSURES Merge(t_1, t_2) = a sorted tree
consisting of the items of t_1 and t_2

$$\text{Merge (Node}(L_1,x,R_1), t_2) = ???$$

We could split t_2 into two subtrees (L_2, R_2),
then do Node(Merge(L_1, L_2), x, Merge(R_1, R_2))

But we need to stay sorted and not lose data…

… so our split should use x and
build (L_2, R_2) so that $L_2 \leq x \leq R_2$ …
splitting a tree

SplitAt : int * tree -> tree * tree

REQUIRES t is a sorted tree

ENSURES SplitAt(x, t) =
 a pair of sorted trees (u₁, u₂) such that
 u₁ ≤ x ≤ u₂ and u₁, u₂ is a perm of t

Not completely specific, but that’s OKAY!
SplitAt

\[
\text{SplitAt} : \text{int} * \text{tree} -> \text{tree} * \text{tree}
\]

If \(t \) is sorted,

\[
\text{SplitAt}(x, t) = \text{a pair of trees } (u_1, u_2) \text{ such that }
\]

\[
\text{every integer in } u_1 \text{ is } \leq x,
\]

\[
\text{every integer in } u_2 \text{ is } \geq x,
\]

\[
\text{and } u_1, u_2 \text{ is a perm of } t.
\]

Any ideas??
Plan

Define SplitAt(t) using *structural recursion*

- SplitAt(x, Node(t₁, y, t₂)) should
 - *compare* x and y
 - call SplitAt(x, -) on a *subtree*
 - build the result
fun SplitAt(x, Empty) = (Empty, Empty)

| SplitAt(x, Node(t1, y, t2)) = |
| _ case compare(y, x) of |
| _ GREATER => |
| _ let val (l1, r1) = SplitAt(x, t1) in (l1, Node(r1, y, t2)) end |
| _ _ => |
| _ let val (l2, r2) = SplitAt(x, t2) in (Node(t1, y, l2), r2) end |

SplitAt : int * tree -> tree * tree

REQUIRES t is a sorted tree
ENSURES SplitAt(x, t) = a pair of sorted trees (u₁, u₂) such that u₁ ≤ x ≤ u₂ and u₁, u₂ is a perm of t
Merge

Merge : tree * tree -> tree

REQUIRES t_1 and t_2 are sorted trees

ENSURES Merge(t_1, t_2) = a sorted tree consisting of the items of t_1 and t_2

```plaintext
fun Merge (Empty, t2) = t2

let
    val (l2, r2) = SplitAt(x, t2)
  in
    Node(Merge(l1, l2), x, Merge(r1, r2))
  end

(as we promised!)
```
Merge

Merge : tree * tree -> tree

REQUIRES

ENSURES

fun Merge (Empty, t2) = t2

let
 val (l2, r2) = SplitAt(x, t2)
in
 Node(Merge(l1, l2), x, Merge(r1, r2))
end
depth lemma

For all trees t and integers x,

\[
\text{depth}(\text{Ins}(x, t)) \leq \text{depth } t + 1
\]

For all trees t, if $\text{SplitAt}(y, t) = (t_1, t_2)$, then

\[
\text{depth}(t_1) \leq \text{depth } t \land \text{depth}(t_2) \leq \text{depth } t
\]

For all trees t_1 and t_2,

\[
\text{depth} (\text{Merge}(t_1, t_2)) \leq \text{depth } t_1 + \text{depth } t_2
\]

(no, we won’t prove this!)
fun Msort Empty = Empty
 | Msort (Node(t1, x, t2)) =
 Ins (x, Merge(Msort t1, Msort t2))
Correct?

• **Q:** How to *prove* that **Msort** is correct?
 A: Use structural induction.

• First prove that the *helper functions* **Merge**, **SplitAt**, **Ins** are correct. Again use structural induction.

• The helper specs were carefully chosen to make the proof of **Msort** straightforward.
 (An easy structural induction, using the proven facts about helpers.)
Mergesort

Msort : tree -> tree

REQUIRES true
ENSURES Msort(t) = a sorted tree consisting of the items of t

fun Msort Empty = Empty
|
| Msort (Node(t1, x, t2)) =
| Ins (x, Merge(Msort t1, Msort t2))
example

val A = list2tree [4,1,2]
val B = list2tree [3,5,0]
val T = Node(A, 42, B)
val S = Msort T