15-150 Fall 2017

Stephen Brookes

Lectures 7 and 8
Sorting an integer tree
1 Outline

- Representing integer trees in ML.
- Tree-based mergesort: a lesson in design and implementation.
- Specifications, correctness and proofs
- Work and span analysis

2 Background

As in previous lecture, we refer to:

type order = LESS | EQUAL | GREATER;

(* compare : int * int -> order *)
fun compare(x:int, y:int):order =
 if x<y then LESS else
 if y<x then GREATER else EQUAL;

(* compare(x,y)=LESS if x<y *)
(* compare(x,y)=EQUAL if x=y *)
(* compare(x,y)=GREATER if x>y *)

A list of integers is sorted if each item in the list is \(\leq \) all items that occur later in the list.

We will also refer to the ins function, used as a helper when we did insertion sort on lists of integers.

(* ins : int * int list -> int list *)
(*REQUIRES L is sorted *)
(* ENSURES ins(x, L) evaluates to a sorted permutation of x::L. *)

fun ins (x, []) = [x]
| ins (x, y::L) = case compare(x, y) of
 GREATER => y::ins(x, L)
 _ => x::y::L
3 Integer trees in ML

We can use a recursive datatype definition to introduce a new type whose values represent (binary) trees containing integers.

datatype tree = Empty | Node of tree * int * tree;

This datatype definition introduces the type named tree, together with two “constructors” Empty:tree and Node:tree * int * tree -> tree for building values of this type. Since this is a user-defined type, these are the only ways you can build values of type tree. And every value of type tree is either Empty, or has the form Node(l, x, r) where l and r are also values of type tree, and x is an integer value. We say that l is the left-child and r is the right-child; x is the integer “at the root”.

Example: The expression Node(Empty, 42, Node(Empty, 99, Empty)) has type tree. This expression is also a value of type tree.

A value of type tree represents a binary tree with integers at its nodes; the Empty tree value contains no integer data. Every non-empty tree has a piece of data at its root and two sub-trees or children, which may be empty.

The constructors can also be used for pattern-matching against values of type tree. The pattern Empty only matches the value Empty. A pattern Node(p1, p, p2), in which p1, p and p2 are also patterns, matches tree values of the form Node(v1, v, v2) such that p1 matches v1, p matches v, and p2 matches v2. For example, the pattern Node(A, x, B) matches non-empty tree values and binds A to the left subtree, x to the root value, and B to the right subtree. Similarly, Node(Empty, x, Empty) matches only non-empty trees with a single node, and binds x to the value at the root.

It is convenient to draw pictures of tree values, rather than always using the ML syntax for tree expressions. In pictures we usually omit drawing Empty nodes explicitly. We draw the root node at the top, subtrees lower, left subtree to the left, and so on. For example, let t be the ML expression (actually a value) below:

Node(Empty, 42, Node(Empty, 9, Empty)).

This tree value t can be drawn as:

```
  42
 /  \
 9  9
```
And the tree $\text{Node}(t, 0, t)$ looks like:

```
   0
  / \
42 42
/   \
9   9
```

Some simple ML code for building “full binary trees”:

```ml
fun Leaf(x:int):tree = Node(Empty, x, Empty);

fun Full(x:int, n:int):tree =
  if n=0 then Empty else
    let val T = Full(x, n-1) in Node(T, x, T) end;
```

The function $\text{Leaf}: \text{int} \to \text{tree}$ builds a tree with a single node. We refer to this as a “leaf”. The tree value of $\text{Full}(2,5)$ is a “full” binary tree with 2 at each node and with depth (or height) 5.

Draw pictures of $\text{Leaf} 42$ and $\text{Full}(42,3)$. Note that the expression $\text{Full}(42,3)$ evaluates to a tree value with 7 nodes, each with the integer 42.

Evaluation, equality, and equivalence

An ML expression $\text{Node}(e_1, e, e_2)$ evaluates from left to right, first evaluating e_1 to a tree value (say v_1) then evaluating x to an integer (say v), then evaluating e_2 to a tree value (say v_2). The final value obtained by this evaluation is then $\text{Node}(v_1, v, v_2)$.

Two ML expressions of type tree are equal (or extensionally equivalent) if they both evaluate to the same tree value (or they both fail to terminate).

For example, $\text{Leaf} 42$ and $\text{Full}(42, 1)$ are equal, because they both evaluate to $\text{Node}(\text{Empty}, 42, \text{Empty})$.

The type tree defined as above is actually an ML equality type, so we can use ML $=$ for testing when two tree values are identical. We won’t use this feature in our sorting functions, but it may be handy for testing.
Structural induction for trees

To reason about trees, and functions on trees, we need a form of induction that works with trees. The structure of the datatype definition for trees is the key here. Every tree value is either Empty, or a non-empty tree of the form \texttt{Node}(l,x,r), where l and r are smaller tree values and x is an integer value. We can prove a property like “for all trees T, \(P(T) \) holds”, as follows:

(i) Base case: Show that \(P(\text{Empty}) \) holds.

(ii) Inductive step: Assume as Induction Hypothesis that l and r are tree values such that \(P(l) \) and \(P(r) \) hold; show that for all integer values x, \(P(\text{Node}(l,x,r)) \) holds.

(iii) It follows from (i) and (ii) that \(P(T) \) holds, for all tree values T.

This proof method is called \textit{structural induction for trees}.

There is also a corresponding principle of structural induction for function definitions. To define a function \(F \) on all tree values:

- Give a clause defining \(F(\text{Empty}) \).
- Give a clause defining \(F(\text{Node}(A,x,B)) \) in terms of \(F(A) \) and \(F(B) \).

Such clauses are sufficient to completely specify the intended value of \(F(T) \), for all tree values T. We say that these clauses constitute a \textit{definition (of F)} \textit{by structural induction on trees}.

For every datatype definition in ML there is an analogous principle of structural induction. We will see many examples later in the semester. You have already seen one: the kind of list induction discussed earlier is basically a form of structural induction, since the ML list types are defined in terms of \texttt{nil} and “cons”.

5
size and depth of trees

The size of a tree is the number of nodes it contains. So the size of \texttt{Empty} is 0, and the size of a non-empty tree is the sum of 1 and the sizes of its two children. We can easily define an ML function \texttt{size : tree \rightarrow int} that computes the size of a tree, using structural recursion:

\begin{verbatim}
fun size Empty = 0
 | size (Node(t1, _, t2)) = size t1 + size t2 + 1
\end{verbatim}

It is easy to check that

\[
\text{size(Full(42,3)) = 7}
\]

Intuitively, \texttt{size(t)} is the number of nodes in \texttt{t}; using structural induction for trees, it is easy to prove this.

The depth of a tree is the length of the longest path from the root of the tree to an \texttt{Empty} subtree. A path is a sequence of nodes. The depth of an empty tree is defined to be 0.

(In lab you will define the function \texttt{depth:tree \rightarrow int} using the integer maximum function as a helper.)

For all trees \texttt{t}, \texttt{size(t) \geq 0} and \texttt{depth(t) \geq 0}; and if \texttt{t'} is a child of \texttt{t}, then \texttt{depth t' < depth t} and \texttt{size t' < size t}. So we can also use \emph{induction on tree depth}, or \emph{induction on tree size}, as techniques for proving properties of trees, or of functions operating on trees.

\textbf{NOTE:} structural induction on trees, induction on tree size, and induction on tree depth, as well as simple and complete induction on non-negative integers, are all special cases of a general technique known as \emph{well-founded induction}.

4 Sorting trees

When is a tree sorted?

A tree is said to be sorted if at each node, the integer at that node is \(\geq \) all integers in the left subtree and \(\leq \) the integers in the right subtree.

Here is an inductive way to characterize sortedness:

- The tree \texttt{Empty} is sorted.
- A non-empty tree value \texttt{Node(A, x, B)} is sorted if and only if every integer in \(A \) is \(\leq x \), every integer in \(B \) is \(\geq x \), and \(A \) and \(B \) are sorted.

For brevity we may sometimes write \(A \leq x \leq B \), with \(A \) and \(B \) being tree values and \(x \) an integer.

While it is possible to write an ML function for testing if a tree is sorted or not, we will not bother to do so here. We won’t ever need to check for sortedness in implementing an algorithm for sorting trees; instead we’ll design our code so that it is guaranteed to return a sorted tree, even without checking.

How to sort a tree

Our algorithm for sorting an integer tree can be described informally as follows:

- If the tree is empty, do nothing.
- Otherwise, (recursively) sort the two subtrees; merge the sorted subtrees into a single sorted tree; then insert the root value into its correct position.

This suggests that we design helper functions for \texttt{inserting} an item into a sorted tree, and \texttt{merging} two sorted trees into one. Later we will see that the merging operation itself needs a helper function, for \texttt{splitting} a tree into two subtrees, using a given integer value to determine which items from the tree go into the first or second subtree. Also it will be important to think carefully about what assumptions it is safe to make about the arguments to be supplied to these helper functions.
Insertion for trees

The tree-based analogue of the insertion function on lists turns out to be just what we need, a truly helpful function in the code that follows. We use capitalization to distinguish this function from the `ins` function on lists.

(* Ins : int * tree -> tree *)
(* REQUIRES T is a sorted tree *)
(* ENSURES Ins(x, T) = a sorted tree consisting of x and all of T *)
fun Ins (x, Empty) = Node(Empty, x, Empty)
| Ins (x, Node(t1, y, t2)) =
 case compare(x,y) of
 GREATER => Node(t1, y, Ins(x, t2))
 | _ => Node(Ins(x, t1), y, t2)

Compare this code with the code for `ins`. See how similar it is.

We now show how to prove by structural induction that `Ins` satisfies this specification. Let $P(T)$ be the property that

For all integer values x, if T is sorted, then $\text{Ins}(x, T)$ evaluates to a sorted tree consisting of x and the items of T.

We prove “For all tree values T, $P(T)$ holds”, by structural induction on T.

- The base case is simple.

 $P(\text{Empty})$ holds, because Empty is sorted and $\text{Ins}(x, \text{Empty})$ evaluates to $\text{Node}(\text{Empty}, x, \text{Empty})$. This is a tree value (because x is an integer value by assumption, and Empty is a tree value), is obviously sorted, and consists of just x, as required.

- For the inductive step we argue as follows.

 Suppose t_1 and t_2 are tree values such that $P(t_1)$ and $P(t_2)$ hold, and let y be an integer value. We show that $P(\text{Node}(t_1,y,t_2))$ holds.

 To do this, let x be an integer value and suppose $\text{Node}(t_1, y, t_2)$ is sorted. We must show that $\text{Ins}(x, \text{Node}(t_1, y, t_2))$ evaluates to a sorted tree value consisting of x and all items of $\text{Node}(t_1, x, t_2)$.

 We also know that t_1 and t_2 are sorted, and $t_1 \leq y \leq t_2$. From the definition of `Ins` we see that

 (a) Either $x>y$, in which case we have
Ins(x, Node(t1, y, t2)) =>* Node(t1, y, Ins(x, t2)).

By induction hypothesis $P(t2)$, $Ins(x, t2)$ evaluates to a sorted tree (say $u2$) consisting of x and all of $t2$, so we get

$Ins(x, Node(t1, y, t2)) =>* Node(t1, y, u2),$

$t1 \leq y \leq u2$, and $t1$ and $u2$ are sorted tree values, so this is a sorted tree value. Clearly it consists of x and y and all of $t1$ and $t2$. Thus $P(Node(t1, y, t2))$ holds in this case.

(b) Or $x \leq y$, in which case we have

$Ins(x, Node(t1, y, t2)) =>* Node(Ins(x, t1), y, t2).$

By induction hypothesis $P(t1)$, $Ins(x, t1)$ evaluates to a sorted tree (say $u1$) consisting of x and all of $t1$, so we get

$Ins(x, Node(t1, y, t2)) =>* Node(u1, y, t2),$

$u1 \leq y \leq t2$, and $u1$ and $t2$ are sorted tree values, so this is a sorted tree value. Clearly it consists of x and y and all of $t1$ and $t2$. Thus $P(Node(t1, y, t2))$ holds in this case also.

So $P(Node(t1, y, t2))$ holds, as needed for the inductive step.

The above specification and proof use evaluational notation and evaluational reasoning. One can also state and prove an equational specification for Ins, using “value equations” derived from the function definition. It follows from the function definition that for all integer values x and y, and all tree values $t1$ and $t2$, the following equations hold:

$Ins(x, Empty) = Node(Empty, x, Empty)$

$Ins(x, Node(t1, y, t2)) = Node(t1, y, Ins(x, t2))$ if $x > y$

$Ins(x, Node(t1, y, t2)) = Node(Ins(x, t1), y, t2)$ if $x < y$ or $x = y$

We can prove that

For all integer values x and all sorted tree values T, there is a sorted tree value S such that

$Ins(x, T) = S$

and S consists of x and all the integers in T.

To prove this result you can basically adapt the evaluational proof steps from above and write a corresponding equational proof.
Splitting a sorted tree

In adapting the mergesort algorithm to operate on trees we need a suitable analog to the `split` function. (In class we motivated this need by trying to figure out how to merge two sorted trees. At some point we found ourselves wanting to split a tree into two trees.) It isn’t easy to figure out a good way to hew a tree into two roughly equal sized pieces, based solely on the structure of the tree (by analogy with the way the split function on lists worked). Instead, we will start from a tree and an integer, and break the tree into two trees, one consisting of items less-or-equal to the integer and the other consisting of items greater than or equal to the integer. (There is some wiggle room here concerning where the items equal to this integer should go.) We will only ever need to use this method on a sorted tree, as you will observe when we develop the code. We also design the function so that when applied to a sorted tree it produces a pair of sorted trees. Indeed the design of this function takes advantage of the assumption that the tree is already sorted, a fact that we echo in the way we write the function’s specification.

```plaintext
(* SplitAt : int * tree -> tree * tree *)
(* REQUIRES T is sorted *)
(* ENSURES SplitAt(x, T) = (A,B) where
  A and B are sorted trees, A <= x <= B,
  A and B consist of the items from T *)

fun SplitAt(x, Empty) = (Empty, Empty)
| SplitAt(x, Node(t1, y, t2)) =
  case compare(y, x) of
    GREATER => let
      val (l1, r1) = SplitAt(x, t1)
      in
        (l1, Node(r1, y, t2))
      end
    | _ => let
      val (l2, r2) = SplitAt(x, t2)
      in
        Node(t1, y, l2), r2)
      end

This function is structurally inductive, because in the recursive clause
SplitAt(x,Node(t1,y,t2)) either calls SplitAt(x,t1) or SplitAt(x,t2),
in each case making a recursive call on a subtree. We prove that \texttt{SplitAt} satisfies this specification, by structural induction. To be precise, we prove “For all tree values \(T, P(T)\)”, where \(P(T)\) is the property that if \(T\) is sorted, then for all values \(x\), \(\texttt{SplitAt}(x, T)\) is equal to a pair of sorted trees \((A, B)\) such that \(A \leq x \leq B\) and \(A, B\) consist of the items of \(T\).

• Base case: \texttt{Empty} is sorted and has no elements, so we need to show that for all values \(x\), \(\texttt{SplitAt}(x, \texttt{Empty})\) is equal to a pair of sorted trees with no elements. By definition we have \(\texttt{SplitAt}(x, \texttt{Empty}) = (\texttt{Empty}, \texttt{Empty})\), and the requirements hold trivially.

• Inductive step: Let \(t\) be a sorted tree of form \(\text{Node}(t1, y, t2)\) and assume that \texttt{SplitAt} satisfies the spec on \(t1\) and on \(t2\). By assumption that the whole tree is sorted, we also know that \(t1\) and \(t2\) are sorted, and that \(t1 \leq y \leq t2\). We show that \(\texttt{SplitAt}(x, t)\) is equal to a pair of sorted trees with the required properties. There are two sub-cases to analyze, branching on the result of comparing the values of \(x\) and \(y\).

(a) If \(y > x\) we have

\[
\text{SplitAt}(x, t) = (l1, \text{Node}(r1, y, t2))
\]

where \((l1, r1) = \text{SplitAt}(x, t1)\). By Induction Hypothesis, \(l1 \leq x \leq r1\) and \(l1, r1\) are sorted trees consisting of the items from \(t1\). So \(l1 \leq x \leq \text{Node}(r1, y, t2)\) and \(r1 \leq y \leq t2\). And \(\text{Node}(r1, y, 12)\) is a sorted tree consisting of the items from \(t1\), \(y\) and \(12\). Together with \(l1\) this covers all the items from \(t\).

(b) If \(y \leq x\) we have

\[
\text{SplitAt}(x, t) = (\text{Node}(t1, y, 12), r2)
\]

where \((l2, r2) = \text{SplitAt}(x, t2)\).

By induction hypothesis, \(12 \leq x \leq r2\) and \(12, r2\) are sorted trees comprising the items from \(t2\). Hence \(t1 \leq y \leq 12\) and \(\text{Node}(t1, y, 12)\) is sorted. Also \(\text{Node}(t1, y, 12) \leq x \leq 12\). (Fill in the remaining details.)

That completes the proof.
Merging two sorted trees

Now the tree-based analog of `merge`: a function that takes a pair of sorted trees and combines their data into a single (also sorted) tree. We use `SplitAt` as a helper.

\[
\text{fun Merge (Empty, t2) = t2} \\
\text{| Merge (Node(l1,x,r1), t2) = let} \\
\text{  val (l2,r2) = SplitAt(x,t2)} \\
\text{  in} \\
\text{  Node(Merge(l1,l2), x, Merge(r1,r2))} \\
\text{end}
\]

The proof that `Merge` meets this spec relies on the fact that `SplitAt` meets its own specification. Indeed, we deliberately chose a spec for `SplitAt` that would help us to prove `Merge` correct. That’s one of the skills that we want you to learn: the art of choosing helper functions and specs wisely!

We claim that “For all sorted tree values \(T\), \(P(T)\) holds”, where \(P(T)\) is the property that

\[
\text{For all sorted tree values U, Merge(T, U) is equal to a sorted tree value comprising the items from T and U.}
\]

The proof is by structural induction on \(T\). (Since sorted trees have sorted children, it is perfectly OK to do this kind of structural induction on sorted trees!)

- \(P(Empty)\) holds obviously. (Fill in the details.)

- For the inductive case, suppose \(l1\) and \(r1\) are sorted tree values for which \(P(l1)\) and \(P(r1)\) hold. Let \(x\) be an integer value and assume \(Node(l1, x, r1)\) is sorted. We must show that \(P(Node(l1, x, r1))\) holds. Let \(U\) be a sorted tree value. By definition of `Merge` we have

\[
\text{Merge(Node(l1, x, r1), U) = Node(Merge(l1, l2), x, Merge(r1, r2))}
\]
where \((l_2, r_2) = \text{SplitAt}(x, U)\). By the proven spec for \text{SplitAt}
(which is applicable here because \(U\) is a sorted tree), \(l_2 \leq x \leq r_2\) and
\(l_2, r_2\) are sorted and comprise the items from \(U\). By assumption that
the original tree is sorted, we have \(l_1 \leq x \leq r_1\), and \(l_1, r_1\) are sorted.
So by Induction Hypothesis, there are sorted tree values \(l\) and \(r\) such
that

\[
\text{Merge}(l_1, l_2) = l, \quad \text{Merge}(r_1, r_2) = r
\]

and \(l\) comprises the items from \(l_1, l_2\), and \(r\) comprises the items from
\(r_1\) and \(r_2\). Hence \(l \leq x \leq r\) and \(\text{Node}(l, x, r)\) is a sorted tree,
consisting of the items from \(l_1, x, r_1, U\), as required.

That completes the proof. (We skipped over a few details – make sure
you understand how to fill in the gaps.)

**Lesson**

It’s important to notice how in the above code analysis the specs for the
various helper functions play a crucial rôle. Just in the nick of time, it turned
out we could appeal to an induction hypothesis, which was applicable \textit{because we had shown that one of the helper functions behaved well}. We were careful
to only use a helper function with arguments that satisfy the requirements
of the helper spec, and in the proof details we confirmed that the guarantees
made by the helper functions (when used in this manner) were sufficient to
ensure that the rest of the code meets its own spec.

If we hadn’t shown that \text{SplitAt} preserves sortedness, we would have no
basis for claiming that \text{Merge} preserves sortedness.

The lesson is: choose your helper functions wisely, choose their specs
wisely (with an eye to how you will use them), and nail down the correctness
proof (at least with a sketch of the key details).

**The tree-sorting function \text{Msort}**

Using \text{Ins} and \text{Merge}, and guided by their (proven) specs, we are now ready
to define a mergesorting function for integer trees. The hard work has already
been done; now comes the easy and more immediately rewarding part!

The tree sorting function in ML is defined in a way that mimics the
algorithm we sketched earlier.
fun Msort Empty = Empty
  | Msort (Node(t1, x, t2)) = Ins (x, Merge(Msort t1, Msort t2))

Again the proof that \texttt{Msort} meets this spec uses the facts (shown earlier) that \texttt{Ins} and \texttt{Merge} satisfy their specs. And again these helper specs were carefully chosen to make this all fit together!

Exercise: fill in the proof details. Contrast with the proof given in the earlier lecture notes for the mergesort function on lists.

5 Exploration

To illustrate how the various functions discussed above actually work on a specific tree example, try running the following code and drawing pictures of the tree values produced in each stage.

val T1 = Node(Leaf 3, 6, Leaf 1);
val T2 = Node(Leaf 5, 2, Empty);
val T = Node(T1, 4, T2);

val M1 = Msort T1;
val M2 = Msort T2;
val M = Merge(M1, M2);

val S = Ins(4, M);

You might also want to try some examples using \texttt{SplitAt}.

Furthermore, it may be useful to define some functions for extracting a list containing the integers in a tree. In lab you will discuss \textit{traversal lists} and in-order, pre-order and post-order traversal of trees. It turns out that an integer tree is sorted if and only if its in-order traversal list is a sorted list of integers. So one can easily check if a tree is sorted by looking at its in-order traversal list.

Just for some irrelevant fun(?), try to figure out a decent specification of what \texttt{SplitAt}, \texttt{Ins} and \texttt{Merge} do when applied to arguments that do NOT satisfy the \texttt{REQUIRES} assumptions used above.
6 Comments on sorting trees

For an integer list $L$ there is just one sorted list that contains the same items as $L$. So it makes sense to talk about “computing the sorted version of $L$”. In contrast, for a collection of at least 2 integers there can be multiple different trees containing the same integers. Indeed, there can be many different sorted trees containing the same integers. So the specifications and proofs so far don’t really tell us much about the shapes of the trees produced by sorting. It would be nice if we guaranteed to produce balanced trees, in which at each node the numbers of integers in the two child subtrees differ by at most 1. However, even if we start with a balanced (unsorted) tree, the functions that we have defined so far do not always produce balanced results. We will return to this point shortly.

7 Size analysis

We can prove some fairly obvious facts about the effects of the operations on the size of a tree.

(1) For all trees $t$ and integers $x$,
\[
\text{size(Ins}(x, t)) = \text{size}(t) + 1.
\]

(2) For all trees $t$ and integers $y$, if $\text{SplitAt}(y, t) = (t_1, t_2)$ then
\[
\text{size}(t_1) + \text{size}(t_2) = \text{size}(t).
\]

(3) For all trees $t_1$ and $t_2$,
\[
\text{size(Merge}(t_1, t_2)) = \text{size } t_1 + \text{size } t_2.
\]

(3) For all trees $t$,
\[
\text{size(Msort } t) = \text{size } t.
\]

In each case, you can prove the result by structural induction. Check that these results are consistent with the examples from before.
8 Depth analysis

We can prove some useful (and intuitively obvious) results about depth. These will be helpful when we analyze the runtime behavior of the code.

The following results are provable, by choosing an appropriate kind of induction. [Of course, to do the proofs we would need access to the function definition for \texttt{depth}, which is given in lab.]

(1) For all trees \( t \) and integers \( x \),

\[
\text{depth(Ins}(x, t)) \leq \text{depth}(t) + 1.
\]
[Use structural induction, since \texttt{Ins}(x, t) makes a recursive call on a child of \( t \).]

(2) For all trees \( t \) and integers \( y \), if \texttt{SplitAt}(y, t) = (t1, t2) then

\[
\text{depth}(t1) \leq \text{depth}(t) \text{ and } \text{depth}(t2) \leq \text{depth}(t).
\]
[Use structural induction, since \texttt{SplitAt}(y, t) makes a recursive call on a child of \( t \).]

(3) For all trees \( t1 \) and \( t2 \),

\[
\text{depth(Merge}(t1, t2)) \leq \text{depth } t1 + \text{ depth } t2.
\]
[Use induction on the structure of \( t1 \).]

(3) For all trees \( t \),

\[
\text{depth(Msort t)} \leq \text{depth } t.
\]
[Use induction on the structure of \( t \).]

Check that these results are consistent with the examples from earlier.
Work and span

We’ve shown how to derive recurrence relations for the work of a sequentially executed piece of code, and how to estimate asymptotically what the runtime is on “large” inputs, using big-O notation.

Now we have some functions operating on trees for which it makes a lot of sense to consider using parallel evaluation. The span of a code fragment is obtained by assuming that we have as many parallel processors as we need, and taking the maximum runtime of code pieces that can be evaluated independently; we still use addition for the run times of code fragments that need to be executed in sequential order, typically because of a data dependency: one fragment needs the result of the other. Operating on trees allows us in principle to sort the left and right children of a node in parallel, since their results do not depend on each other. Of course, these tasks need to be completed before the merging phase. And the splitting phase needs to go first.

These facts guide us in analyzing the span. Here is a rough outline. With trees there are two “largeness” measures of interest: depth and size.

- The work and span for $\text{Ins}(x,t)$ is $O(d)$, where $d$ is the depth of $t$. Reason: $\text{Ins}(x,t)$ makes a single recursive call, on a subtree with depth decreased by 1.
- $\text{SplitAt}(y,t)$ has span $O(d)$, where $d = \text{depth } t$. Reason: makes a single recursive call, on a tree with depth one less.
- $\text{Merge}(t_1,t_2)$ has span $O(d_1d_2)$, where $d_1, d_2$ are $\text{depth } t_1, \text{depth } t_2$.
- Assuming that the trees produced by $\text{Msort}$ are balanced, so that their depth is about the logarithm of their size, $\text{Msort}(t)$ has span $O(d^3)$, where $d$ is the depth of $t$. Reason: making the balance assumption leads us to the recurrence

$$S_{\text{Msort}}(d) = S_{\text{Ins}}(d) + S_{\text{Merge}}(d-1) + S_{\text{Msort}}(d-1) = d + (d-1)^2 + S_{\text{Msort}}(d-1),$$

for balanced trees of depth $d > 1$. Expanding out, and observing that the sum of the first $d$ squares is proportional to $d^3$, we deduce that the span is $O(d^3)$. Since the size $n$ of a balanced tree and its depth $d$ satisfy $d = O(\log n)$, our analysis shows that the span for $\text{Msort}(t)$ on balanced trees of size $n$ is $O((\log n)^3)$. 17
Thus (ignoring constants), when we sort a billion integers in a balanced tree, the length of the longest critical path is about 27000 operations, so we can exploit over a million processors!

This would be true, except for the bug in the above analysis! We assumed implicitly in the rough analysis (and explicitly in the preamble) that the trees passed by \texttt{Msort} to \texttt{Merge} were balanced. However, this is not necessarily the case, because even if we assumed that the original tree was balanced, these two trees have been built by calling \texttt{Msort} (albeit on balanced trees). We haven't proven that \texttt{Msort} applied to a balanced tree will produce a balanced tree. In fact, this isn't necessarily true. The best that our analysis really predicts is that the span of this algorithm can't actually be better than this bound, because we obtained this bound by making the most optimistic assumptions about the structure of the tree.

Later we will discuss how to implement binary trees with insertion and deletion operations that are guaranteed to build trees with a reasonable balance property built in. When we get there, you might want to come back and see how you could adapt the code above to fit with these better behaved trees.

(look again at the examples from before: are the various trees constructed there balanced?)

\textbf{Exercise}

A student pointed out that there is a way to define a version of tree-mergesort that avoids using \texttt{Ins}, instead calling \texttt{Merge}:

\begin{verbatim}
fun Msort' Empty = Empty
| Msort' (Node(t1, x, t2)) =
    Merge(Node(Empty, x, Empty), Merge(Msort' t1, Msort' t2))
\end{verbatim}

(i) Would this be extensionally equivalent to the previous function? (How would one prove it?)

(ii) Does this function satisfy the same specification as before, i.e. does it still sort?

(iii) And is it as efficient, or more efficient, asymptotically? (How could you determine this?)
10 Self-test 7

1. Write an ML function leaves : tree -> int list such that for all tree values T, leaves(T) = the list of all integers occurring at leaf nodes of T. For example, leaves(Full(42,3)) = [42,42,42,42].

2. Let T be a tree with depth d. Why is the size of T at most $2^d - 1$?

3. Write an ML function treesum : tree -> int such that for all tree values T, treesum(T) evaluates to the sum of the integers at the nodes of T. For example, treesum(Full(42,3)) should evaluate to 294.

4. Write an ML function leafsum : tree -> int such that for all tree values T, leafsum(T) evaluates to the sum of the integers at leaf nodes of T. We interpret this quantity as 0 if the tree is Empty. Do not use leaves from above!

5. State and prove a theorem about the value of treesum(Full(x,n)) when n is a non-negative integer.

6. How many different tree values T have exactly three nodes containing the integers 1, 2, 3? Of these, how many are sorted trees?

7. Define an ML function balanced : tree -> bool such that for all tree values T, balanced(T) = true if at each node of T the sizes of the left and right children differ by at most 1. Otherwise balanced(T) = false.

8. Calculate the value produced by the following piece of code:

   ```ml
 val T1 = Node(Leaf 1, 6, Leaf 3);
 val T2 = Node(Empty, 5, Leaf 2);
 val T = Node(T1, 4, T2);
 Msort T;
   ```

9. Prove that Msort satisfies its specification. You can assume given proofs that Merge and Ins satisfy their specifications.

10. Let $T_n$ be the tree value of the expression Full(42,n), for $n \geq 0$. This is a full binary tree of depth $n$ with 42 at each node. State and prove an assertion about the (shape of the) value of Msort($T_n$).