Most of the time I don't have much fun.
The rest of the time I don't have any fun at all.
today

Sorting an integer list

• specifications and proofs
• asymptotic analysis

SML features

• `datatype` definitions
• `boolean connectives`
• `case` expressions
• `<>` means `≠`
comparison

`compare : int * int -> order`

```
datatype order = LESS | EQUAL | GREATER

fun compare(x:int, y:int):order = 
  if x<y then LESS 
  else 
    if y<x then GREATER 
    else EQUAL

compare(x,y) = LESS     if x<y
compare(x,y) = EQUAL   if x=y
compare(x,y) = GREATER if x>y
```
properties of \leq

• \leq is a linear ordering

 For all values $a, b, c : \text{int}$

 If $a \leq b$ and $b \leq a$ then $a = b$ (antisymmetric)

 If $a \leq b$ and $b \leq c$ then $a \leq c$ (transitive)

 Either $a \leq b$ or $b \leq a$ (total, or linear)

• $<$ is defined by

 $a < b$ if and only if $(a \leq b$ and $a \neq b)$

 and satisfies

 $a < b$ or $b < a$ or $a = b$ (trichotomy)
A list of integers is \(-\text{sorted}\) (or just \(\text{“sorted”}\)) if each item in the list is \(\leq\) all items that occur later.

\[
\text{fun} \; \text{sorted} \; [] = \text{true} \\
| \; \text{sorted} \; [x] = \text{true} \\
| \; \text{sorted} \; (x::y::L) = \\
\quad (x <= y) \; \text{andalso} \; \text{sorted}(y::L)
\]

For all \(L : \text{int list}\),

\[
\text{sorted}(L) = \text{true} \quad \text{if} \; L \; \text{is sorted} \\
= \text{false} \quad \text{otherwise}
\]
A list of integers is \textit{\textless -sorted} (or just \textit{``sorted''}) if each item in the list is \leq all items that occur later.

\begin{verbatim}
fun sorted [] = true
| sorted [x] = true
| sorted (x::y::L) = (compare(x,y) <> GREATER) andalso sorted(y::L)
\end{verbatim}

\textit{order} is an equality type

An equivalent definition, using \textit{compare}
specs and code

• We use `sorted` only in `specifications`.

• Our sorting functions won’t use it.

• But you could use it for testing...
• **Insertion sort** is a simple *sorting algorithm* that builds the sorted list recursively, one item at a time.

• If the list is empty, do nothing.

• Otherwise, each recursive call inserts an item from the input list into its correct position in the sorted list so far.

(Wikipedia doesn’t give good specs!)
insertion sort

- If the list is empty, do nothing.
- Otherwise, recursively sort the tail, then \textit{insert the head item into its correct position in the sorted tail.}

... need a \textit{helper function to do insertion}

\texttt{ins : int * int list -> int list}
\texttt{REQUIRES ...}
\texttt{ENSURES ...}
insertion

\[
\text{ins} : \text{int} \times \text{int list} \rightarrow \text{int list}
\]

REQUIRES \(L \) is a sorted list

ENSURES \(\text{ins}(x, L) \) = a sorted permutation of \(x::L \)

\[
\text{fun ins (x, []) = [x]}
\]

\[
\text{fun ins (x, y::L) = case compare(x, y) of}
\]

\[
\text{GREATER} \Rightarrow y :: \text{ins}(x, L)
\]

\[
\text{_} \Rightarrow x :: y :: L
\]

For all sorted integer lists \(L \),

\(\text{ins}(x, L) \) = a sorted permutation of \(x::L \).
insertion

ins : int * int list -> int list

REQUIRES L is a sorted list

ENSURES ins(x, L) = a sorted perm of x::L

fun ins (x, []) = [x]

| ins (x, y::L) =
| if x>y then y::ins(x, L) else x::y::L

(equivalent code, using if-then-else)
ins equations

For all values \(x, y : \text{int} \) and \(L : \text{int list} \),

\[
\text{ins} (x, []) = [x]
\]

\[
\text{ins} (x, y::L) = \begin{cases}
 y::\text{ins}(x, L) & \text{if } x>y \\
 x::y::L & \text{otherwise}
\end{cases}
\]
Theorem

For all sorted integer lists \(L \), all values \(x:\text{int} \),
\[
\text{ins}(x, L) = \text{a sorted permutation of } x::L.
\]

- **Proof**: By induction on *length* of \(L \).
- **Base case**: When \(L \) has length 0, \(L \) is `[]`. `[]` is sorted, and \(\text{ins}(x, []) = [x] \) is a sorted perm of \(x::[] \).
- **Inductive case**: Let \(k>0 \) and assume

 IH: For all sorted lists \(A \) of length < \(k \), all values \(x \),
 \[
 \text{ins}(x, A) = \text{a sorted perm of } x::A.
 \]

 - Let \(L \) be sorted, of length \(k \). Pick \(y, R \) so that \(L=y::R \).
 - \(R \) is sorted, of length < \(k \), and \(y \leq \) all of \(R \).
 - Need to show:
 \[
 \text{ins}(x, y::R) = \text{a sorted perm of } x::(y::R)
 \]
inductive case

(some more details)

\[
\text{ins}(x, y::R) = \begin{cases}
 y::\text{ins}(x, R) & \text{if } x>y \\
 x::y::R & \text{otherwise}
\end{cases}
\]

- R is sorted, length < k, and y ≤ all of R.
- By IH, \(\text{ins}(x, R) = \text{a sorted perm of } x::R\)
 - If \(x>y\) we have \(\text{ins}(x, y::R) = y::\text{ins}(x,R)\)
 This list is sorted because...
 This list is a perm of \(x::y::R\) because...
 - Otherwise, \(x\leq y\) and \(\text{ins}(x, y::R) = x::y::R\)
 This list is sorted because...
 This list is a perm of \(x::y::R\) because...
- In all cases, \(\text{ins}(x, y::R) = \text{a sorted perm of } x::y::L\)
isort

isort : int list -> int list

REQUIRES true
ENSURES isort(L) = a sorted perm of L

fun isort [] = []
 | isort (x::L) = ins (x, isort L)

For all values L: int list,
 isort L = a sorted permutation of L.
For all values $L: \text{int list}$,
\[\text{isort } L = \text{ a sorted permutation of } L. \]

- **Proof**: By induction on length of L.
- **Base case**: for $L = [\]$.

 Show that $\text{isort } [\] = \text{ a sorted perm of } [\]$.

- **Inductive case**: for $L = y::R$.

 IH: $$\text{isort } R = \text{ a sorted perm of } R.$$

 Show: $\text{isort}(y::R) = \text{ a sorted perm of } y::R$.

 Use the **proven** spec for ins!
isort is a total function from int list to int list

When \(e \) evaluates to \(L \), isort \(e \) evaluates to the sorted version of \(L \)
a variation

fun isort [] = []
| isort (x::L) = ins (x, isort L)

fun isort' [] = []
| isort' [x] = [x]
| isort' (x::L) = ins (x, isort' L)
variation

isort' : int list -> int list

fun isort' [] = []
| isort' [x] = [x]
| isort' (x::L) = ins (x, isort' L)

If in doubt,

test,

then prove
equivalent

• `isort` and `isort'` are extensionally equivalent.

 For all `L : int list`, `isort L = isort' L`.

• Proof? (See lecture notes!)
work

• Let $W_{\text{ins}}(n)$ be the work for $\text{ins}(x, L)$ when x, L are values and L has length n

 $W_{\text{ins}}(n)$ is $O(n)$

• Let $W_{\text{isort}}(n)$ be the work for $\text{isort}(L)$ when L is a list of length n

 $W_{\text{isort}}(0) = 1$

 $W_{\text{isort}}(n) = O(n)W_{\text{ins}}(n-1) + W_{\text{isort}}(n-1)$ for $n > 0$

 $W_{\text{isort}}(n)$ is $O(n^2)$
Conceptually, a merge sort works as follows:

1. Divide the unsorted list into \(n \) sublists, each containing 1 element.

2. Repeatedly Merge sublists to produce new sublists until there is only 1 sublist left.

Wrong! Wrong! Wrong!

Doesn’t say “recursive”…

… what’s \(n \)?

… repeatedly????

… and then?

What’s the output?

How does it relate to the input?
mergesort

A recursive *divide-and-conquer* algorithm

- If list has length 0 or 1, do nothing.
- If list has length 2 or more,

 split the list into two shorter lists,
 sort these lists,
 merge the results

(not a good specification of *input-output behavior*,
but does describe an *algorithm*)
implementation

• First, design helper functions

 split : int list -> int list * int list
 merge : int list * int list -> int list

 (what specs?)
split spec

split : int list -> int list * int list
REQUIRES true
ENSURES split(L) = a pair of lists (A, B)
such that length(A) and length(B) differ by at most 1,
and A@B is a permutation of L.

fun split [] = ([], [])
| split [x] = ([x], [])
| split (x::y::L) =
 let val (A, B) = split L in (x::A, y::B) end
fun split [] = ([], [])
| split [x] = ([x], [])
| split (x::y::L) =
 let val (A, B) = split L in (x::A, y::B) end

the function definition gives rise to value equations that describe its applicative behavior
split equations

For all values x, y : int and L : int list,

\[
\text{split } [] = ([], [])
\]

\[
\text{split } [x] = ([x], [])
\]

\[
\text{split } (x::y::L) = (x::A, y::B),
\]

where \((A, B) = \text{split } L\)

\[
\text{let val (A, B) = \text{split } L in } (x::A, y::B) \text{ end}
\]

Can be used to calculate split R

\[
\text{split } [4,2,1,3] = ([4,1], [2,3])
\]
split [38, 27, 43, 3, 9, 82, 10]

= ([38, 43, 9, 10], [27, 3, 82])
• **Proof:** by (strong) induction on *length* of L

• **Base cases:** L = [], [x]
 (i) Show that split [] = a pair (A, B) such that length(A) \(\approx \) length(B) & A@B is a perm of [].
 (ii) Show that split [x] = a pair (A, B) such that length(A) \(\approx \) length(B) & A@B is a perm of [x].

• **Inductive case:** L=x::y::R
 Induction Hypothesis: split(R) = a pair (A’, B’) such that length(A’) \(\approx \) length(B’) & A’@B’ is a perm of R.
 (iii) Show that split(x::y::R) = a pair (A, B) such that length(A) \(\approx \) length(B) & A@B is a perm of x::y::R.

Key facts

split [] = ([], [])
[]@[] = []

split [x] = ([x], [])
[x]@[] = [x]
comments

• We used strong induction on length of L rather than simple induction.

• Reason: $\text{split}(x::y::R)$ calls $\text{split}(R)$ and length of R is two less than length of $x::y::R$.
notes

• If \(\text{length}(L) > 1 \) and \(\text{split}(L) = (A, B) \), then \(A \) and \(B \) have *smaller* length than \(L \).

• This follows from the spec, using some fairly obvious facts:

\[
\begin{align*}
A \@ B \text{ is a perm of } L, \text{ so} \\
\text{length}(A) + \text{length}(B) &= \text{length}(L) \\
\text{length}(A) \& \text{length}(B) &\text{ differ by 0 or 1} \\
\text{if } n > 1 \text{ and } n \text{ odd, } & (n \text{ div } 2) + 1 < n \\
\text{if } n > 1 \text{ and } n \text{ even, } & n \text{ div } 2 < n
\end{align*}
\]
merge

merge : int list * int list -> int list
REQUIRES A and B are sorted lists
ENSURES merge(A, B) = a sorted perm of A@B

fun merge (A, []) = A
| merge ([], B) = B
| merge (x::A, y::B) = case compare(x, y) of
 | LESS => x :: merge(A, y::B)
 | EQUAL => x :: y :: merge(A, B)
 | GREATER => y :: merge(x::A, B)
merge equations

For all values \(x, y : \text{int} \) and \(A, B : \text{int list} \),

\[
\begin{align*}
\text{merge} (A, []) &= A \\
\text{merge} ([], B) &= B \\
\text{merge} (x::A, y::B) &= \begin{cases} \\
\text{if } x < y & \text{then } x :: \text{merge}(A, y::B) \\
\text{if } x = y & \text{then } x :: y :: \text{merge}(A, B) \\
\text{if } x > y & \text{then } y :: \text{merge}(x::A, B) \\
\end{cases}
\end{align*}
\]

Can be used to evaluate \(\text{merge}(L,R) \) for all values \(L, R : \text{int list} \)

\[
\text{merge}([1,4], [2,3]) = [1,2,3,4]
\]
merge = ([38, 43, 9, 10], [27, 3, 82])
= [3, 9, 10, 27, 38, 43, 82]
• **Proof**: *strong* induction on *product of lengths* of A, B.

• **Base cases**: (A, []) and ([], B).
 (i) Show: if A is sorted, merge(A,[]) = a sorted perm of A@[].
 (ii) Show: if B is sorted, merge([],B) = a sorted perm of []@B.

• **Inductive case**: (x::A, y::B).
 IH: for all pairs(A’, B’) with smaller product of lengths, if A’ & B’ are sorted, merge(A’, B’) = a sorted perm of A’@B’.
 Show: if x::A and y::B are sorted, merge(x::A, y::B) = a sorted perm of (x::A)@(y::B).

 (Exercise: fill in the details!)
Does clause order matter here? **NO**

Patterns are Exhaustive

Overlap of first two clauses is harmless

Each yields $\text{merge}([], []) = []$

(not true for all function definitions!)

Could use nested **if-then-else** instead of **case**.
But we need a 3-way branch, so **case** is better style.
so far

• We defined split and merge
• We proved they meet their specs
• Now let’s use them to implement the mergesort algorithm...
msort

msort : int list -> int list

REQUIRES true
ENSURES msort(L) = a sorted perm of L

fun msort [] = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge (msort A, msort B)
 end

msort [4,2,1,3] =>* [1,2,3,4]
msort equations

For all values $x : \text{int}$ and $L : \text{int list}$,

$$\text{msort } [] = []$$
$$\text{msort } [x] = [x]$$

$$\text{msort } L = \text{merge}(\text{msort } A, \text{msort } B)$$
where $(A, B) = \text{split } L$,

if $\text{length } L$ is at least 2

(where did this side condition come from?)
msort [38, 27, 43, 3, 9, 82, 10]

= merge (msort [38, 43, 4, 10], msort [27, 3, 82])

= merge ([4, 10, 38, 43], [3, 27, 82])

= [3, 4, 10, 27, 38, 43, 82]
proof outline

For all L:int list,
msort(L) = a sorted permutation of L.

- **Method**: by strong induction on *length* of L

- **Base cases**:
 1. Show \(msort \[\] = \) a sorted perm of \[\]
 2. Show \(msort \[x\] = \) a sorted perm of \[x\]

- **Inductive case**: suppose \(\text{length}(L) > 1 \). Inductive hypothesis: for all *shorter* lists \(R \), \(msort \, R = \) a sorted perm of \(R \).
 Show that \(msort \, L = \) a sorted perm of \(L \).
REQUIRES true
ENSURES msort(L) = a sorted perm of L

fun msort [] = []
| msort [x] = [x]
| msort L = let
 val (A, B) = split L
 val A' = msort A
 val B' = msort B
 in
 merge (A', B')
end
fun msort [] = []
 | msort [x] = [x]
 | msort L = let
 val (A, B) = split L
 in
 merge (msort A, msort B)
 end
after deletion

msort : int list -> int list

fun msort [] = []

| msort L = let
 val (A, B) = split L
 in
 merge (msort A, msort B)
 end

loops forever
on non-empty lists
the problem

• split [x] = ([x], [])

• msort [x] =>* (fn ... => ...) (msort [x], msort [])

leads to infinite computation
principles

• Every function needs a spec
• Every spec needs a proof
• Recursive functions need inductive proofs
 • Learn to pick an appropriate method...
 • Choose helper functions wisely!

proof of msort was easy, because of split and merge