15-150 Fall 2017

Stephen Brookes
Dilsun Kaynar

Lecture 4
Recursion and induction
Last time

- Specification format for a function
 - the function’s type
 - argument assumption (REQUIRES)
 - result guarantee (ENSURES)

For all (properly typed) arguments satisfying the assumption, the result satisfies the guarantee
Today

Proving that a specification is valid

- We introduce *proofs by induction*
 - templates to help write accurate proofs
- Focus on *examples*
 - program structure *guides* proof
What is a proof?

A proof is a connected series of statements intended to establish a proposition.

No it isn’t!
Yes it is!
It’s not just contradiction.
It CAN be.
No it ISN'T!
What is a proof?

- A proof is a sequence of steps.
- Each step must follow logically from *math facts* or the results of *earlier steps*.
Simple induction

• To prove a property of the form $P(n)$, for all non-negative integers n

• First, prove $P(0)$.

• Then show that, for all $k \geq 0$, $P(k+1)$ follows logically from $P(k)$.

base

inductive step
Why this works

- P(0) gets a direct proof \textit{base}
- P(0) implies P(1) \textit{step}
- P(1) implies P(2) \textit{step}
- …

For each \(n \geq 0\) we can establish \(P(n)\)

(follows from \textit{base} after \(n\) uses of \textit{step})
Example

fun $f(x:\text{int}):\text{int} = \textbf{if } x=0 \textbf{ then } 1 \textbf{ else } f(x-1)$

(* REQUIREES $n \geq 0$ *)

(* ENSURES $f(n) = 1$ *)

• To prove:

For all $n: \text{int}$ such that $n \geq 0$, $f(n) = 1$
Example proof (part 1)

Let $P(n)$ be “$f(n) = 1$”

Theorem: $\forall n \geq 0. P(n)$

Proof: By simple induction on n.

- **Base**: we prove $P(0)$. Here’s a proof:

 \[
 f\ 0 = (\text{fn } x => \text{if } x=0 \text{ then } 1 \text{ else } f(x-1))\ 0 \\
 = \text{if } 0=0 \text{ then } 1 \text{ else } f(0-1) \\
 = \text{if true then } 1 \text{ else } f(0-1) \\
 = 1
 \]

 So $f(0) = 1$. That’s $P(0)$.

Example proof (part 2)

fun f(x:int):int = if x=0 then 1 else f(x-1)

• Inductive step:
 Let k ≥ 0 and assume P(k), f k = 1.
 We prove P(k+1), f(k+1) = 1.

• Let v be the value of k+1, so v = k+1.

 f(k+1) = (fn x => if x=0 then 1 else f(x-1))(k+1)
 = (fn x => if x=0 then 1 else f(x-1))(v)
 = if v=0 then 1 else f(v-1)
 = if false then 1 else f(v-1)
 = f(v-1)
 = f(k) since v=k+1
 = 1 by assumption P(k)

So P(k+1) holds.
Notes

• State the *induction hypothesis* clearly

• Use induction hypothesis only when *justified*

• Use equations and rules only when *justified*

• Use math and logic accurately

• Give explanation for non-trivial steps
NOT a proof that $f(0) = 1$

\[
f(0) = 1
\]

\[
(f x \Rightarrow \text{if } x=0 \text{ then } 1 \text{ else } f(x-1))\ 0 = 1
\]

\[
\text{if } 0=0 \text{ then } 1 \text{ else } f(0-1) = 1
\]

\[
\text{if true then } 1 \text{ else } f(0-1) = 1
\]

\[
1 = 1
\]

true

Why is this not a proof?

- A proof is a sequence of steps.
- Each step must follow logically from math facts or the results of earlier steps.
backwards = wrong

0 = 1
1 = 0 by symmetry
0 + 1 = 1 + 0 by adding
1 = 1 by arithmetic
true

A “proof” that 0 = 1
Comments

• The spec and proof for \(\forall n \geq 0. f(n) = 1 \) used *equational* reasoning

• We could have worked with *evaluational* reasoning, but the details would be different

(let’s do it!)
Example
(using evaluational reasoning)

fun f(x:int):int = if x=0 then 1 else f(x-1)

(* REQUIRES e =>* n for some value n≥0 *)
(* ENSURES f(e) =>* 1 *)

(assumes the argument is an expression that evaluates to a non-negative integer)

• To prove:
 For all n≥0,
 for all e:int such that e =>* n, f(e) =>* 1
Proof by simple induction

fun f(x:int):int = if x=0 then 1 else f(x-1)

Let P(n) be “for all e:int such that e =>* n, f(e) =>* 1”

To prove: ∀n≥0. P(n)

- **Base**: prove P(0). Suppose e =>* 0.

 f(e) => (fn x => if x=0 then 1 else f(x-1))(e)
 =>* (fn x => if x=0 then 1 else f(x-1)) 0
 => if 0=0 then 1 else f(0-1)
 => if true then 1 else f(0-1)
 => 1

So f(e) =>* 1. This establishes P(0).
Proof by simple induction

fun f(x:int):int = if x=0 then 1 else f(x-1)

• Inductive step:
 Let k≥0 and assume P(k). Then prove P(k+1).

• Let v = k+1 and suppose e =>* v.

 f(e) => (fn x => if x=0 then 1 else f(x-1))(e)
 =>* (fn x => if x=0 then 1 else f(x-1))(v)
 => if v=0 then 1 else f(v-1) since v>0
 => if false then 1 else f(v-1)
 => f(v-1) by P(k), since v-1 =>* k
 =>* 1

So P(k+1) holds.
Proof by simple induction

fun f(x:int):int = if x=0 then 1 else f(x-1)

P(n) is “for all e:int such that e =>* n, f(e) =>* 1”

Conclusion

• The base analysis proved P(0).
• The inductive analysis showed that for k≥0, P(k) implies P(k+1).
• Hence for all n≥0, P(n) holds.
Remarks

• In **equational** reasoning we don’t always have to mimic **evaluation** order

• Sometimes we can do **parallel** analysis steps that don’t reflect actual evaluation of code

• This may yield a shorter proof

fun f(x:int):int = if x=0 then 1 else f(x-1) + f(x-1)

For all n:int such that \(n \geq 0 \), \(f(n) = 2^n \)

For all n:int such that \(n \geq 0 \), \(f(n) \Rightarrow^* 2^n \)
Using simple induction

• Q: When can I use simple induction to prove a property of a recursive function f?

• A: When we can find a non-negative measure of argument size and show that if $f(x)$ calls $f(y)$ then $\text{size}(y) = \text{size}(x) - 1$

pick a notion of size appropriate for f
Examples

fun fact (x : int) : int = if x=0 then 1 else x * fact(x-1)

fun sum (L : int list) : int =
 case L of
 [] => 0
 | (x::R) => x + sum R

Which of these can be proven by simple induction?

For all \(n \geq 0 \), \(\text{fact } n \) evaluates to an integer value

\(\text{fact is total} \) For all \(n \geq 0 \), \(\text{fact } n > n \)

\(\text{sum is total} \) For all \(n > 2 \), \(\text{fact } n > n \)
Example

fun eval [] = 0
| eval (d::L) = d + 10 * (eval L)

(The length of the argument list decreases in the recursive call)

To prove:

For all values L:int list
there is an integer n such that
eval L =>* n
Exercise

- Prove the specification for `eval`

- It’s easy using simple induction on the length of the argument list

(this proof shows that `eval : int list -> int` is a `total` function)
Life’s not always simple

You cannot use simple induction on n for

```
fun decimal (n:int) : int list =
  if n<10 then [n]
  else (n mod 10) :: decimal (n div 10)
```

Why not?
Strong induction

• To prove a property of the form

\[P(n), \text{ for all non-negative integers } n \]

Show that, for all \(k \geq 0 \),

\[P(k) \text{ follows logically from } P(0), \ldots, P(k-1). \]

You can use any, all, or none to establish \(P(k) \).
Why this works

• P(0) gets a direct proof
• P(0) implies P(1)
• P(0), P(1) imply P(2)
• P(0), P(1), P(2) imply P(3)

For each $k \geq 0$ we can establish $P(k)$ with k uses of step
Using strong induction

• Q: When can I use strong induction to prove a property of a recursive function \(f \)?

• A: When we can find a non-negative measure of argument \(\text{size} \) and show that if \(f(x) \) calls \(f(y) \) then \(\text{size}(y) < \text{size}(x) \)
Notes

• Sometimes, even for simple induction, it’s convenient to handle several “base” case argument values at the same time.

• A proof using strong induction may not need a separate “base” case analysis.
 • can sometimes handle all possible arguments in the “inductive step”
Example

fun decimal (n:int) : int list =
 if n<10 then [n]
 else (n mod 10) :: decimal (n div 10)

(when n≥10, we get 0 ≤ n div 10 < n,
 so the argument value decreases
 in the recursive call)

To prove:

For all values n≥0, eval(decimal n) = n
Proof by strong induction

- For $0 \leq n < 10$, show directly that $\text{eval}(\text{decimal } n) = n$

- For $n \geq 10$, assume that

 For each m such that $0 \leq m < n$,
 $\text{eval}(\text{decimal } m) = m$

 Then show that
 $\text{eval}(\text{decimal } n) = n$

multiple base cases handled together

use inductive analysis for cases that make a recursive call
Reminder

fun eval [] = 0
 | eval (d::L) = d + 10 * (eval L)

fun decimal n =
 if n<10 then [n]
 else (n mod 10) :: decimal (n div 10)

For all values $n \geq 0$,
\[\text{eval}(\text{decimal } n) = n \]

Proof: by strong induction on n
Proof sketch
(the base cases)

• For $0 \leq n < 10$ we have

 eval(decimal n)

 $= \text{eval [n]}

 = n$

(that was easy!)
Proof sketch
(the inductive part)

• For \(n \geq 10 \) let \(r = n \mod 10 \), \(q = n \div 10 \).
 \[
 \text{eval(\text{decimal } n)} = \text{eval } ((n \mod 10) :: \text{decimal}(n \div 10)) = \text{eval } (r :: \text{decimal } q)
 \]

• Since \(0 \leq q < n \) it follows from IH that
 \[\text{eval(\text{decimal } q)} = q\]

• Hence there is a list value \(Q \) such that
 \[\text{decimal}(q) = Q \text{ and } \text{eval } Q = q\]
 So \[\text{eval } (r :: \text{decimal } q) = \text{eval } (r::Q) = r + 10 \times \text{eval}(Q) = r + 10 \times q = n\]

This shows that \(\text{eval(\text{decimal } n)} = n \)
Proof sketch
(conclusion)

Let \(P(n) \) be “\(\text{eval(decimal n)} = n \)”

- The base analysis shows \(P(0), P(1), \ldots, P(9) \)

- The inductive analysis shows that for \(n \geq 10 \), \(P(n) \) follows from \(\{P(0), \ldots, P(n-1)\} \)

- Hence, for all \(n \geq 0 \), \(P(n) \) holds
Notes

• We used equational reasoning to show that for all values $n \geq 0$, $\text{eval(\text{decimal } n)} = n$

• It follows that for all expressions $e:\text{int}$, if $e \Rightarrow^* n$ and $n \geq 0$, then $\text{eval(\text{decimal } e)} \Rightarrow^* n$

• It’s also possible to use evaluational reasoning to prove this result, inductively.
So far

• Simple and strong induction
• Examples of their use
• Just the beginning…

Next

• Another example
• What would you do?
Example

fun log(x:int):int =
 if x=1 then 0 else 1 + log(x div 2)
fun log(x:int):int =
 if x=1 then 0 else 1 + log(x div 2)

(* log : int -> int *)

(* REQUIRES n > 0 *)

(* ENSURES log n keeps dividing n by 2
 * until it gets to 1
 *)

too vague... doesn’t describe the result
too operational... talks about internal details
Example

fun log(x:int):int =
 if x=1 then 0 else 1 + log(x div 2)

(* log : int -> int *)

(* REQUIRES n > 0 *)

(* ENSURES log n evaluates to an integer k *)

(* such that 2^k ≤ n < 2^{k+1} *)

describes the key properties
of the result value
Exercise

• Show that for each integer $n > 0$, there is a unique integer k such that $2^k \leq n < 2^{k+1}$
 • this k is called the logarithm (base 2) of n

• Prove the spec for \log

This shows that \log computes logarithms (base 2)