today

• playing *games* to win
 • modular programming
 • programming with sequences
 • *later*: functors and code re-use
games

- two players, taking turns
- no randomness
- players see everything
- if I win, you lose
- finitely many next moves
- No infinite move sequences

2-person
deterministic
perfect information
zero-sum
finitely branching
terminating
Simple Nim

- Start with a pile of sticks
- In each turn, take up to 1, 2 or 3 sticks
- Whoever takes the last stick loses
the plan

• A framework for *game playing*
 • signatures, structures, functors
 • GAME, PLAYER, …

• Main example: **Simple Nim**
Games

• A game has states and moves
• *Making a move* takes you to a new state
• Two players *alternate*
• *Terminal* states have no moves
• Terminal states have a score or *payoff*
A Nim game tree

Starting with 3 sticks, Me first

Nodes are states

Edges are moves

Leaf nodes are terminal states

Maxie

Minnie

Maxie

Minnie

Maxie

Minnie

Minnie
strategy
picking moves that lead to the best outcome

If I take 1, you can take 1,
then I have to take 1 and lose.
Starting from 3 sticks, I have a best move

I’ll take 2, then you must take 1 and lose

Maxie

Minnie

Maxie

Minnie
strategies

• A strategy is a function from states to moves
 • A winning strategy for Maxie means Maxie can win, no matter what Minnie does

• Games don’t always have winning strategies...
For each state in the game tree, we can compute a value (outcome) that predicts the eventual result from that state, assuming that both players try their best.

- Since Nim is a zero-sum game, we use +1 for “Maxie wins” and -1 for “Minnie wins”.
- I want to maximize the outcome.
- You want to minimize the outcome.
Nim tree analysis

We can compute values for states, using *bottom-up propagation*

- Leaf nodes are easy (the last player loses)
- At a **Maxie** node, if any child has label +1, label this node as +1; otherwise use -1
- At a **Minnie** node, if any child has label -1, label this node as -1; otherwise use +1
game tree analysis

We can compute labels for states, using *bottom-up propagation*

- Leaf nodes are easy (the last player loses)
- At a *Maxie* node, use *maximum* child label
- At a *Minnie* node, use *minimum* child label

This works in general, not just for Nim!
Nim analysis

- Label the leaf nodes

labels

+1: I win
-1: You win

Me (Maxie)
You (Minnie)
Me (Maxie)
You (Minnie)
Nim analysis

• Propagate

labels

+1: I win
-1: You win

Me (Maxie)
You (Minnie)

Me (Maxie)
You (Minnie)
Nim analysis

- Propagate again

labels
+1: I win
-1: You win
Nim analysis

- Propagate again

labels

+1: I win
-1: You win

Me (Maxie)
You (Minnie)

Me (Maxie)
You (Minnie)
Nim analysis

- ... propagate all the way to the root

labels
+1: I win
-1: You win

Me (Maxie)
You (Minnie)
Me (Maxie)
You (Minnie)
Nim conclusion

- Label of state 3 is $+1$
- I should pick the move take 2

labels

$+1$: I win

-1: You win

I can win from 3 by moving to a state labelled $+1$
minimax

- This algorithm is known as minimax
- Makes sense for arbitrary games
- But other games aren’t so well behaved!
 - may have tied states
 - game tree may be large
 - game tree may be infinite
more generally

• In many games the search tree is too large (maybe even infinite depth!)

• Can try minimax up to a fixed depth and make an estimate for deeper states

• Estimation may be based on a heuristic that predicts an outcome based on the current state
Nim heuristic

For Nim there is a **genius** heuristic

- In state $k > 0$ (with k sticks remaining), the player to go next will **lose** if $k \mod 4 = 1$, will **win** otherwise

(we can prove this is 100% accurate, assuming the player always chooses moves using this heuristic)
Modular Framework

- Game : GAME (e.g. Nim)
- Player : PLAYER (includes a game)
- Referee : GO (glues 2 players to play)
our plan

• Signatures GAME, PLAYER,

• Structure NIM

• Later: A functor that builds minimax players for a given game

• Later: bounded search and heuristics

We won’t actually build game trees
Instead we’ll use recursion...
signature GAME =

sig

 datatype player = Minnie | Maxie
 datatype outcome = Winner of player | Draw
 datatype status = Over of outcome | In_play

 type state (* abstract *)
 type move (* abstract *)

 val start
 val make_move : state * move -> state
 val moves : state -> move Seq.seq

 ...

end

continued on the next page
signature GAME =
sig
 ...
 val status : state -> status
 val player : state -> player

datatype est = Definitely of outcome | Guess of int

 val estimate : state -> est

 val stateToString : state -> string
 val statusToString : status -> string
 val estToString : est -> string
 val movesToString : move Seq.seq -> string
end
structure Nim : GAME =
struct
 datatype player = Maxie | Minnie
 datatype outcome = Winner of player | Draw
 datatype status = Over of outcome | In_play

 datatype state = State of int * player

 datatype move = Move of int

 val start = State (15, Maxie)

 fun flip Maxie = Minnie
 | flip Minnie = Maxie

 ...
end

continued on the next page
struct

fun make_move (State (n, p), Move k) =
 if (n >= k) then State (n - k, flip p)
 else Fail "tried to make an illegal move"

fun moves (State (n, _)) = Seq.tabulate (fn k => Move(k+1)) (Int.min(n,3))

fun status (State (0, p)) = Over(Winner p)
 | status _ = In_play

fun player (State (_, p)) = p

...
struct

…

datatype est = Definitely of outcome | Guess of int

fun estimate (State (n, p)) =
 if n mod 4 = 1 then Definitely (Winner (flip p))
 else Definitely (Winner p)

(* If there are n pebbles left, with n=1 (mod 4),
then the player whose turn it is must lose.
Otherwise, that player can win.*)

…

end
-Nim.estimate (Nim.start)

val it = Definitely (Winner Maxie)
signature PLAYER =
sig

structure Game : GAME

(* REQUIRES: Game.status(s) = ln_play *)
(* ENSURES: next_move(s) evaluates to a Game move legal at s. *)
val next_move : Game.state -> Game.move

end
signature SETTINGS =
sig
 structure Game : GAME
 val depth : int
end

To be used in bounding the depth of the game tree
Modular Framework

- Game : GAME (e.g. Nim)
- Player : PLAYER (includes a game)
- Referee : GO (glues 2 players to play)
signature TWO_PLAYERS =
sig

structure Maxie : PLAYER
structure Minnie : PLAYER
sharing type Maxie.Game.state = Minnie.Game.state
sharing type Maxie.Game.move = Minnie.Game.move
end

Any structure matching TWO_PLAYERS must be constructed so that Minnie and Maxie play the same game
Next time

- Define a functor that creates a MiniMax player
 - expects a structure ascribing to SETTINGS and produces a structure ascribing to the signature PLAYER

- Define a functor Referee that takes two players and produces a structure to run the game
 - expects a structure ascribing to TWO_PLAYERS and produces a structure that can be used to run the game
functor HumanPlayer (G : GAME) : PLAYER =
struct
structure Game = G

fun readmove () =
case TextIO.inputLine TextIO.stdIn of
 NONE => raise Fail "early input termination; aborting"
 | SOME(str) => SOME(String.substring(str, 0, String.size(str)-1))
(* This strips off a trailing newline character, as required by G.parse_move. *)

fun parsemove(state, NONE) = NONE
 | parsemove(state, SOME(str)) = G.parse_move state str

fun player_to_string (G.Maxie) = "Maxie"
 | player_to_string (G.Minnie) = "Minnie"

fun next_move state =
 let
 val _ = print(player_to_string(G.player state) ^ ", please type your move: ")
 in
 case parsemove(state, readmove()) of
 SOME(m) => m
 | NONE => (print "Something is wrong; bad input or bad move.\n";
 next_move state)
 end
end (* HumanPlayer *)
fun parse_move (State (n, _)) str =
 let
 fun enough k = if k <= n then SOME(Move k) else NONE
 in
 case str of
 "1" => enough 1
 | "2" => enough 2
 | "3" => enough 3
 | _ => NONE
 end