15-150 Fall 2025 Lecture 19

Parallelism

Cost Semantics and Sequences

today

parallel programming

- parallelism and functional style
- cost semantics
- Brent's Theorem and speed-ups
- sequences: an abstract type with efficient parallel operations

parallelism

exploiting multiple processors evaluating independent code simultaneously

- low-level implementation
 - scheduling work onto processors, tell each processor to do at each time step
- high-level planning
 - designing code abstractly
 - without baking in a schedule

our approach

Deal with scheduling implicitly

- Programmer specifies what to do
- Compiler determines how to schedule the work
- Parallelism is deterministic

Our thesis: this approach to parallelism will prevail..

(and 15-210 builds on these ideas...)

functional benefits

- No side effects, so...
 evaluation order doesn't affect correctness
- Can build abstract types that support efficient parallel-friendly operations
- Can use work and span to predict potential for parallel speed-up
 - Work and span are independent of scheduling details

caveat

- In practice, it's hard to achieve speed-up
- Current language implementations don't make it easy
- Problems include:
 - scheduling overhead
 - locality of data (cache problems)
 - runtime sensitive to scheduling choices

what can programmers do?

- Lists bake in sequential evaluation. Trees don't.
- Today, we introduce sequences that have a linear structure like lists but offer parallelism of trees.
- Reason about time complexity using work and span

cost semantics

We already introduced work and span

- Work estimates the sequential running time on a single processor
- Span takes account of data dependency, estimates the parallel running time with unlimited processors

cost semantics

- We showed how to calculate work and span for recursive functions with **recurrence relations**
- Now we introduce cost graphs, another tool to deal with work and span
- Cost graphs also allow us to talk about schedules...
- ... and the potential for speed-up

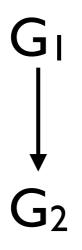
cost graphs

A cost graph is a series-parallel graph

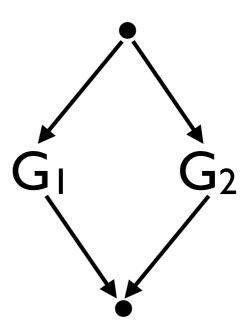
- a directed acyclic graph, with source and sink (constant time)
- branching indicates potential parallelism

series-parallel graphs

a single node



sequential composition



parallel composition

(n-ary parallelism allowed)

example

$$(1+2)*3$$

$$(1+2) \left\{ \begin{array}{c} 1 & -2 & 3 \\ -2 & 3 \end{array} \right\}$$
 $(1+2) * 3$

(Edges are implicitly directed downward)

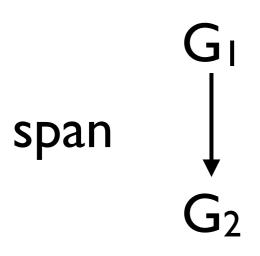
work and span

of a cost graph

- The **work** is the number of nodes
- The span is the length of the longest path from source to sink

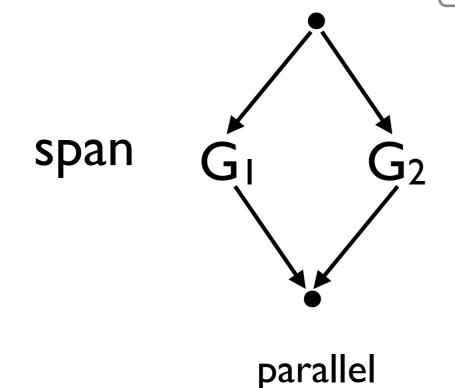
 $span(G) \leq work(G)$

span



$$=$$
 span G_1 + span G_2 + c

sequential code ... add the span



composition

$$= max(span G_1, span G_2) + c$$

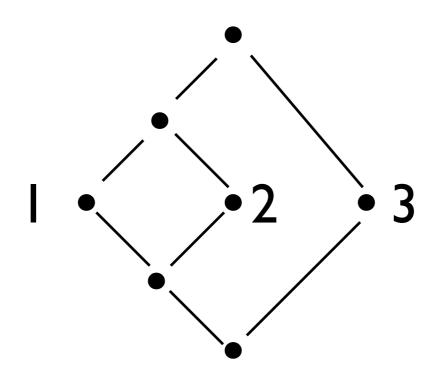
parallel code ... max the span

sources and sinks

- Sometimes we omit them from pictures
- No loss of generality
 - easy to put them in
- No difference, asymptotically
 - a single node represents an additive constant amount of work and span
- Allows easier explanation of execution

example

$$(1+2)*3$$



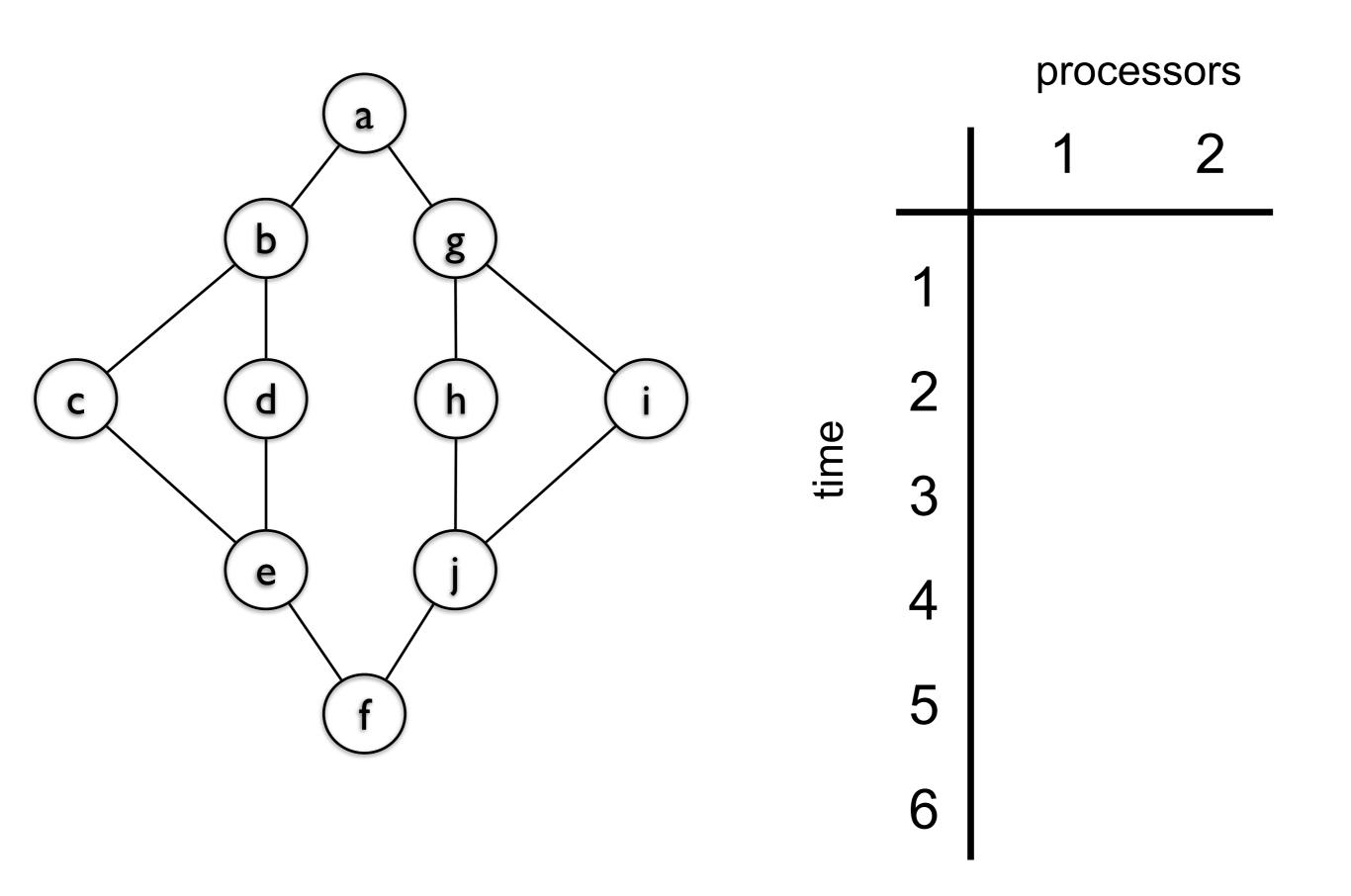
$$work = 7$$

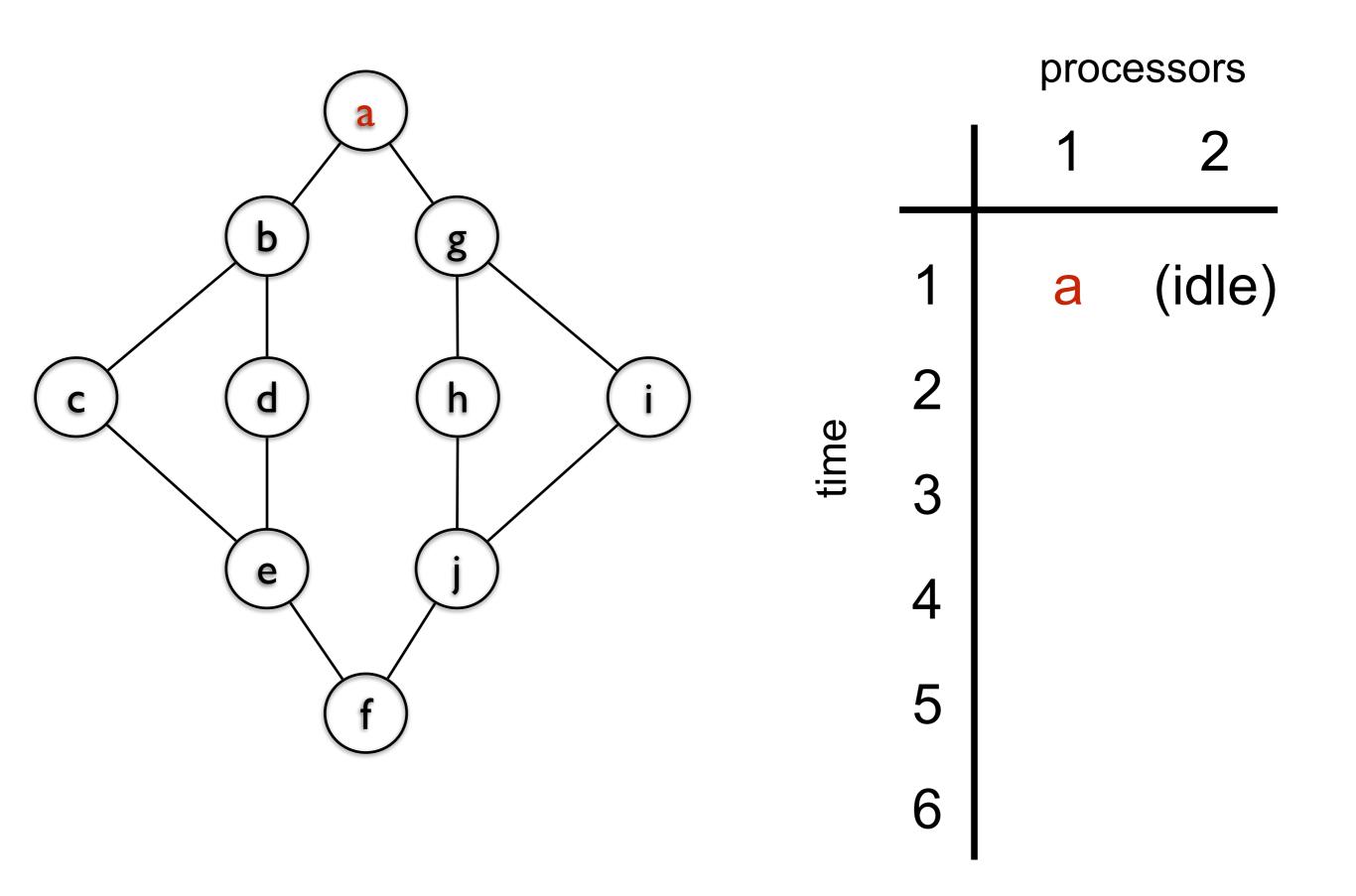
Brent's Theorem

An expression with work \mathbf{w} and span \mathbf{s} can be evaluated on a \mathbf{p} -processor machine in time $\Omega(\max(\mathbf{w}/\mathbf{p}, \mathbf{s}))$.

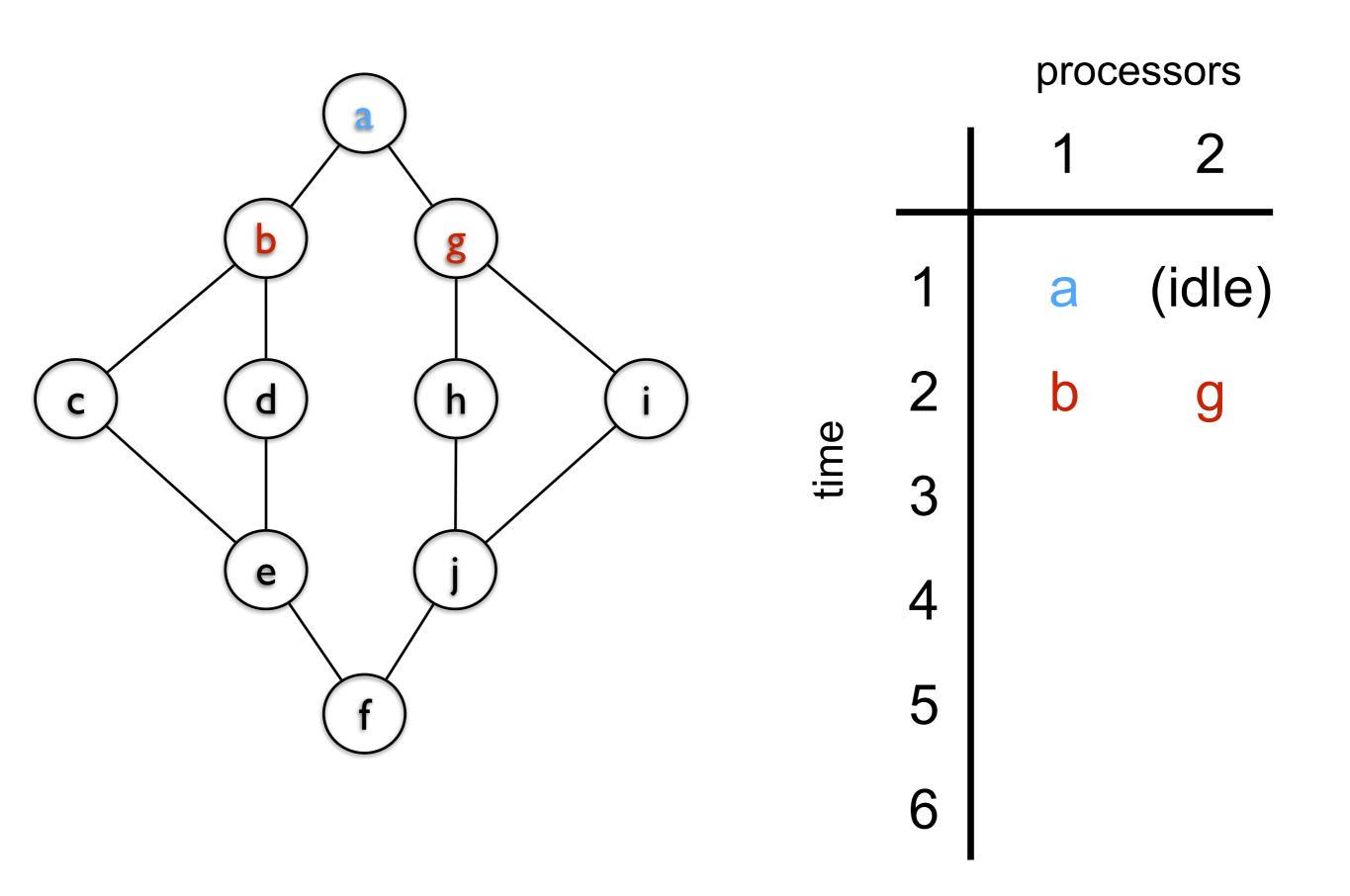
scheduling

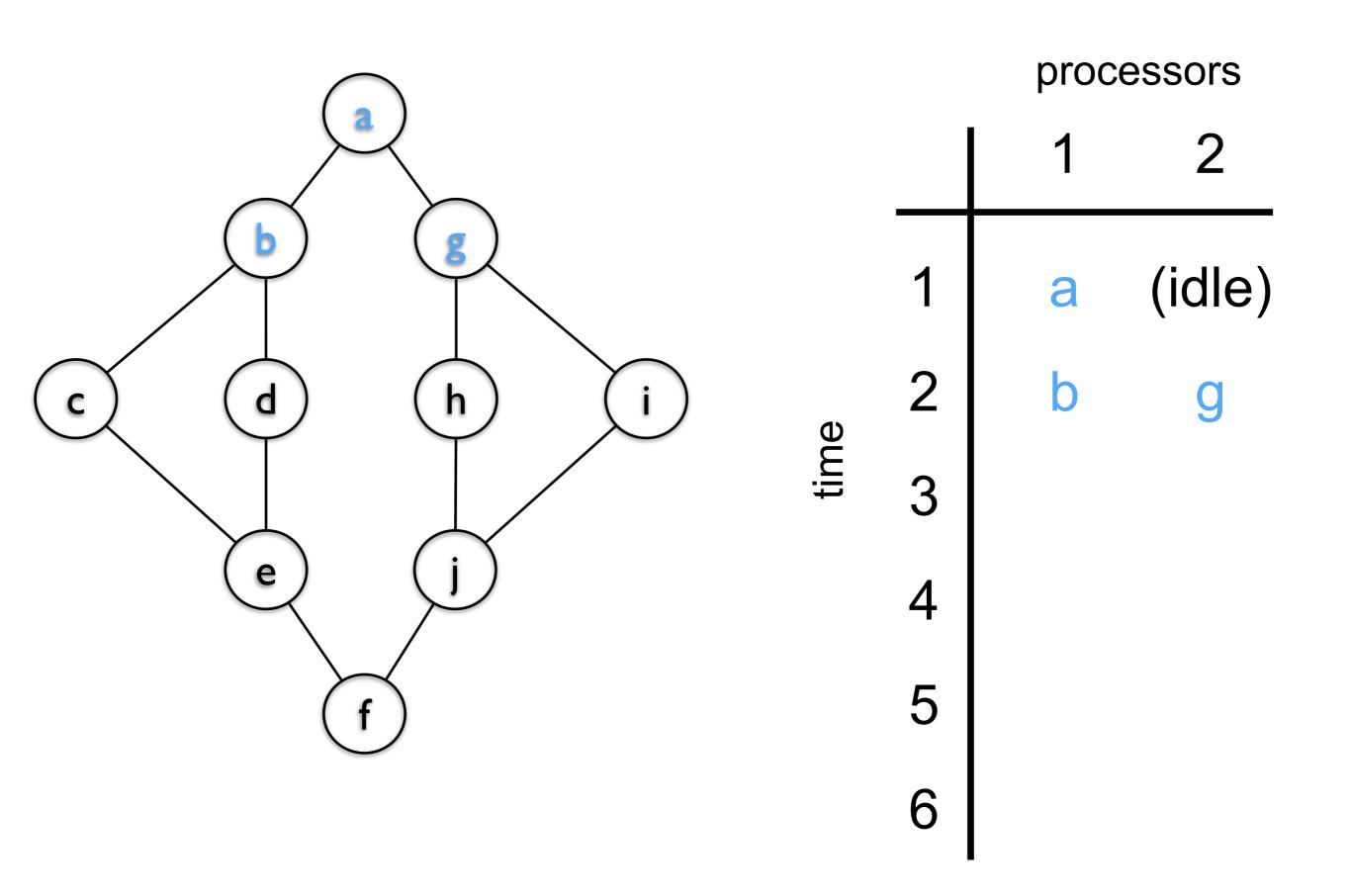
- p pebbles, with p the number of processors
- Start with one pebble on cost graph G's source
- Putting a pebble on a node visits the node
- At each time step, pick up all pebbles and put at most p on the graph, no more than one per node. Can only put a pebble on an unvisited model all of whose ancestors have been visited.

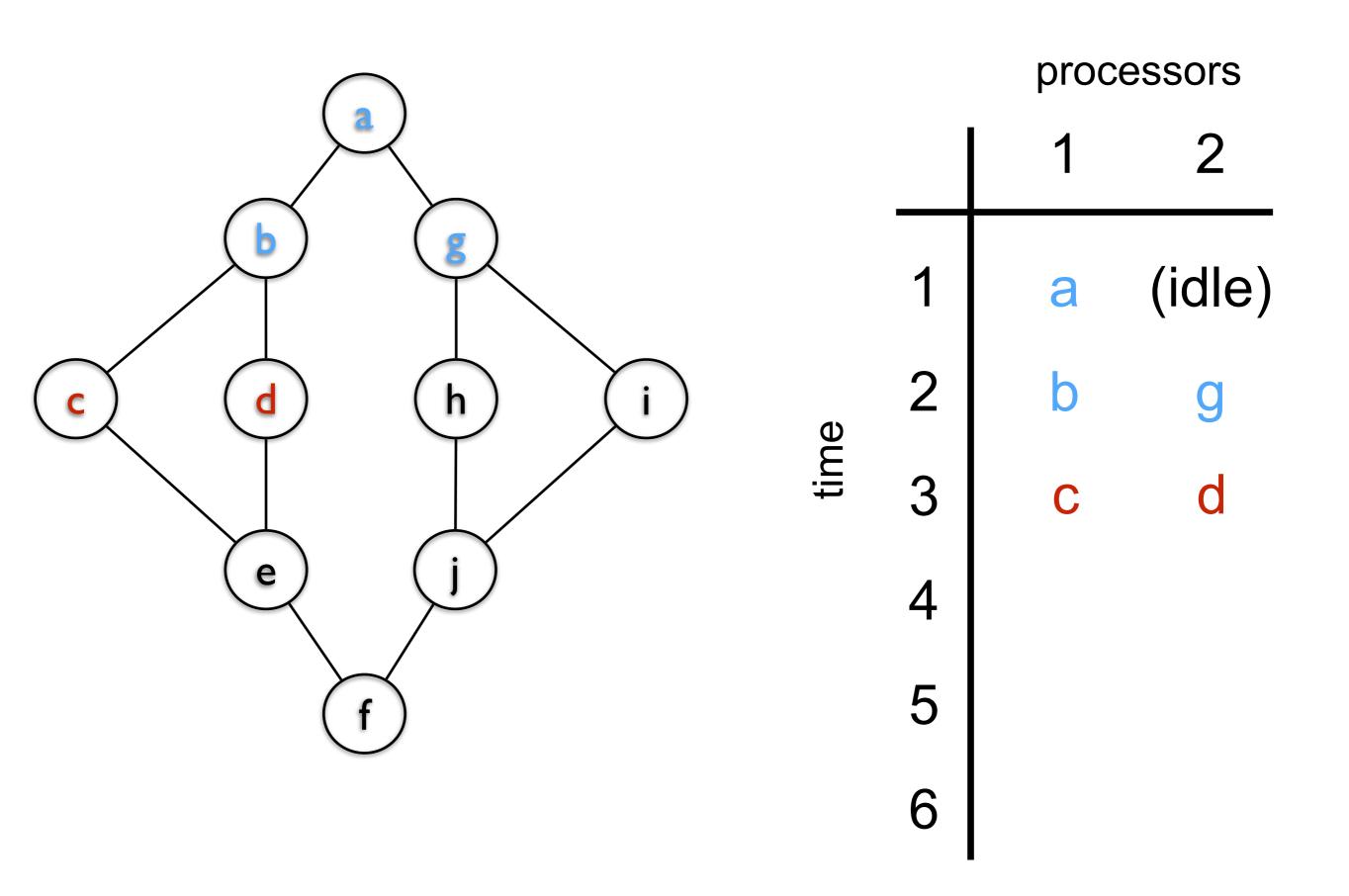


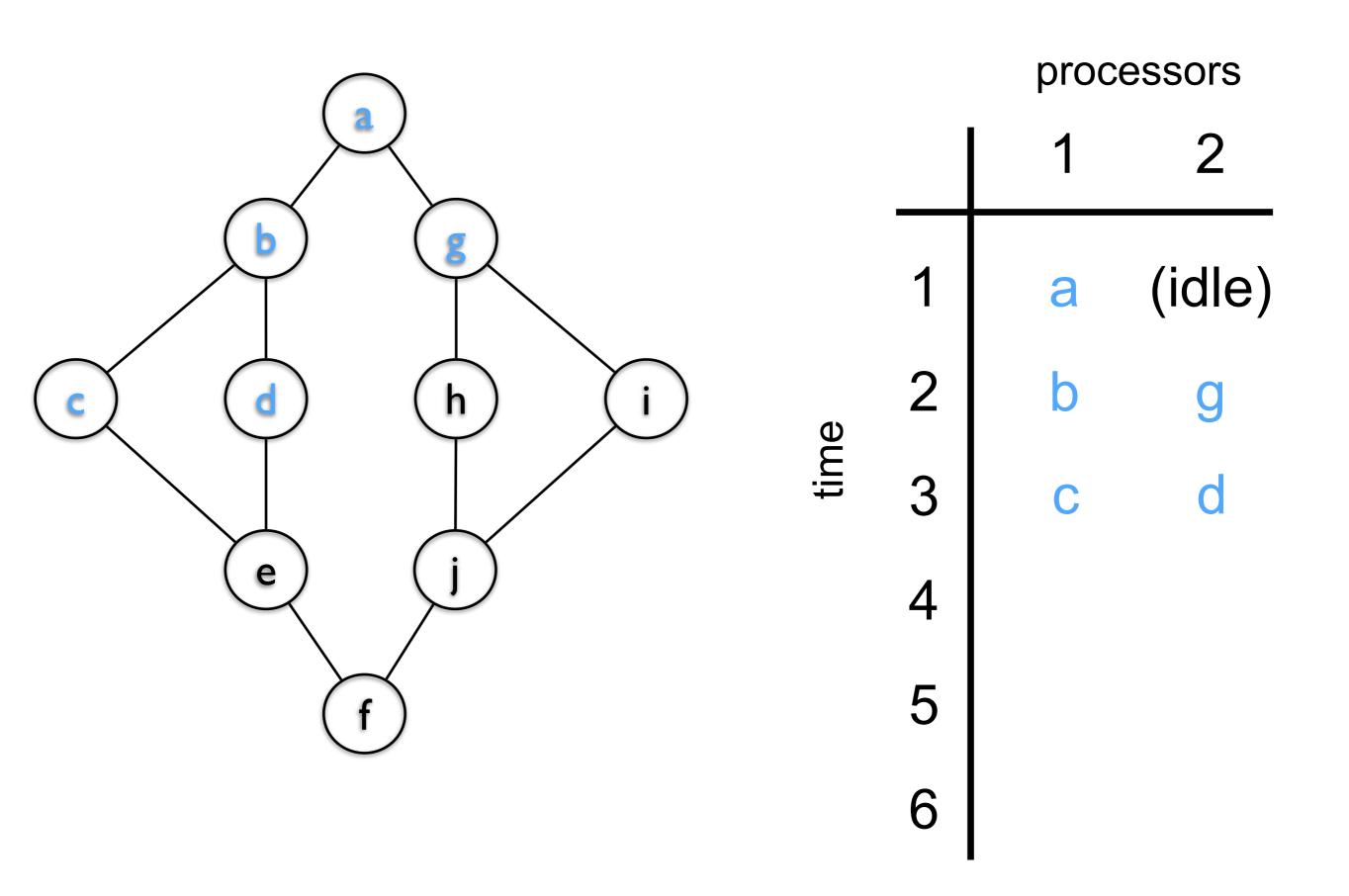


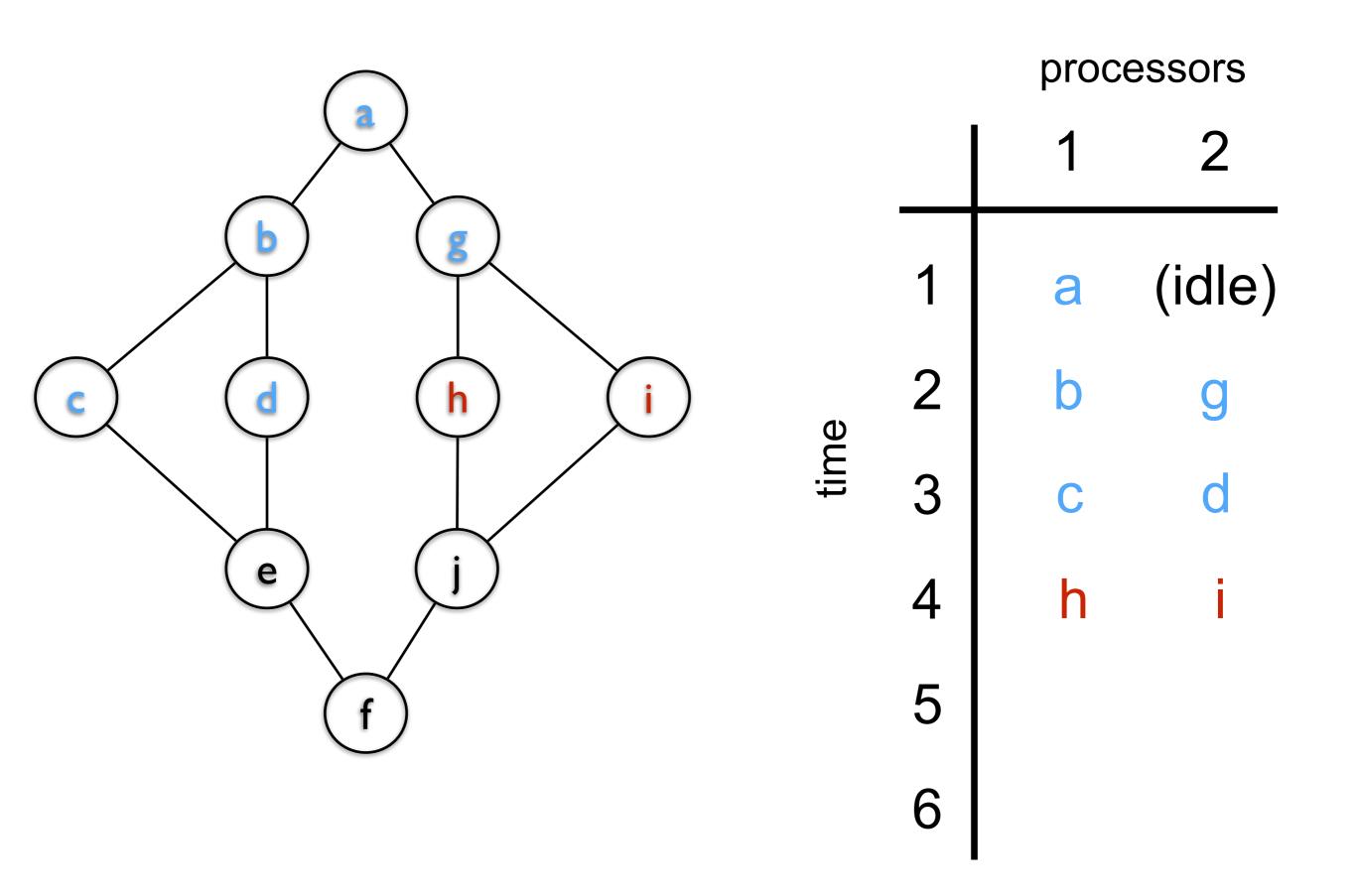


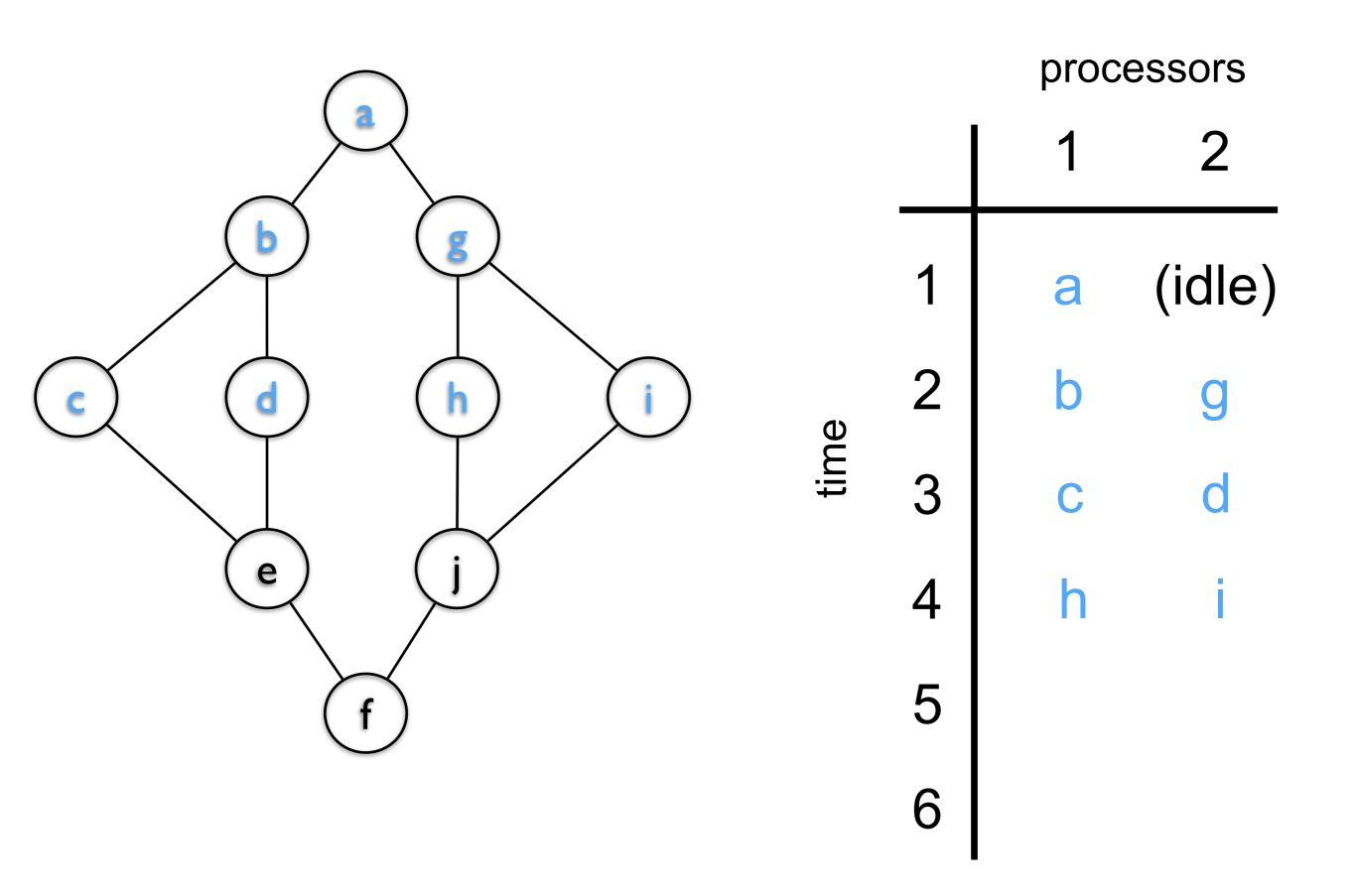


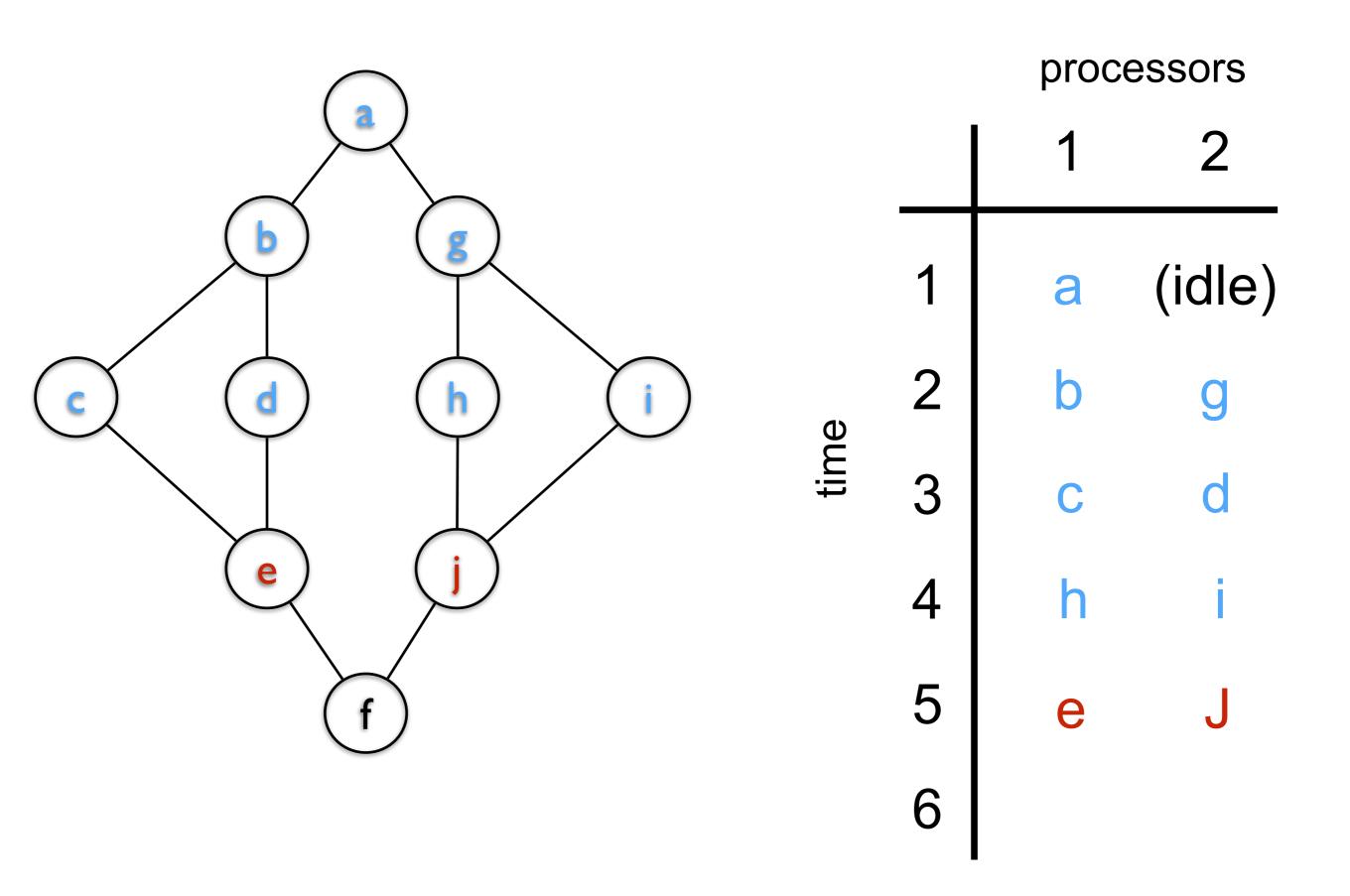


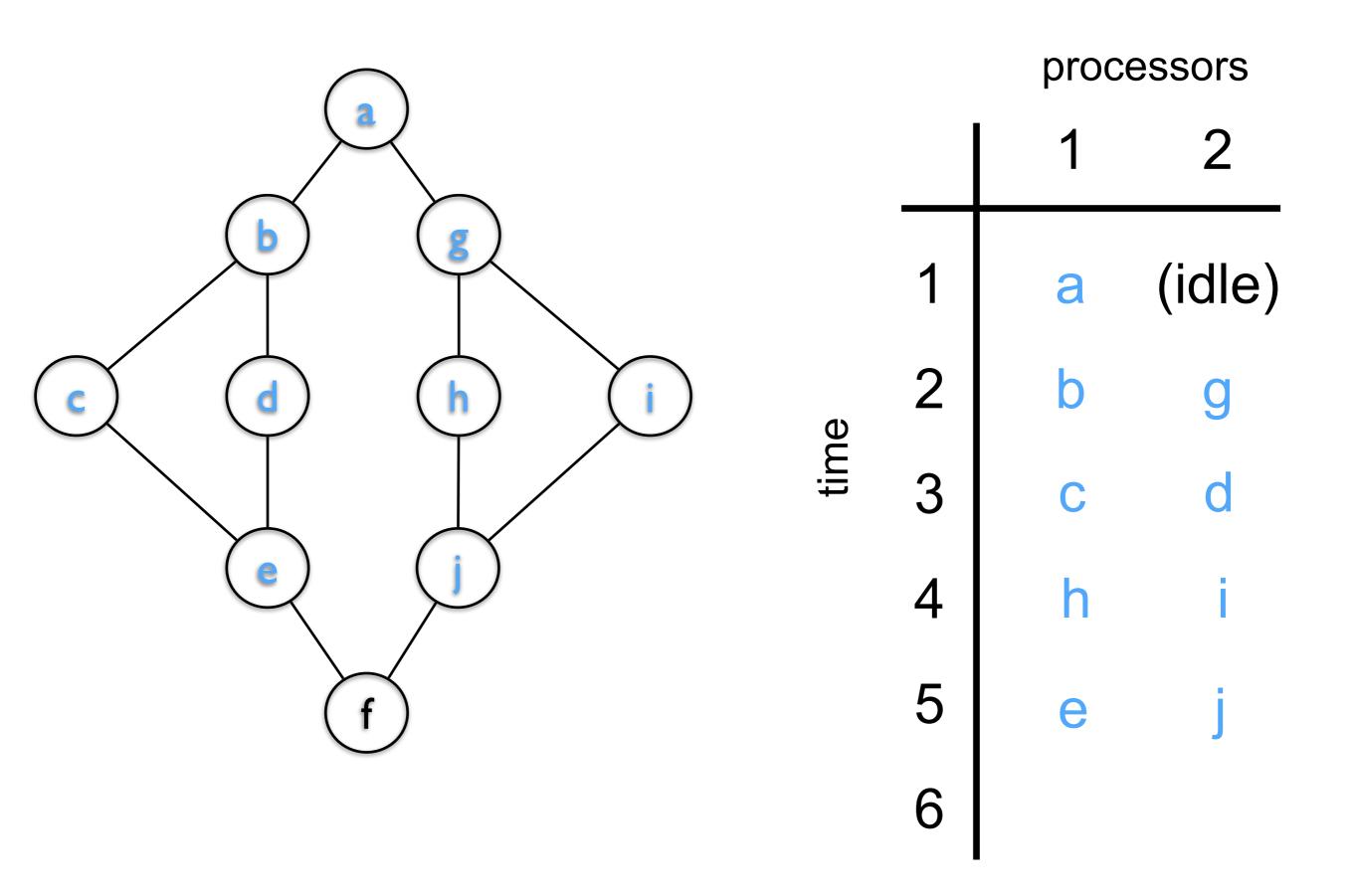


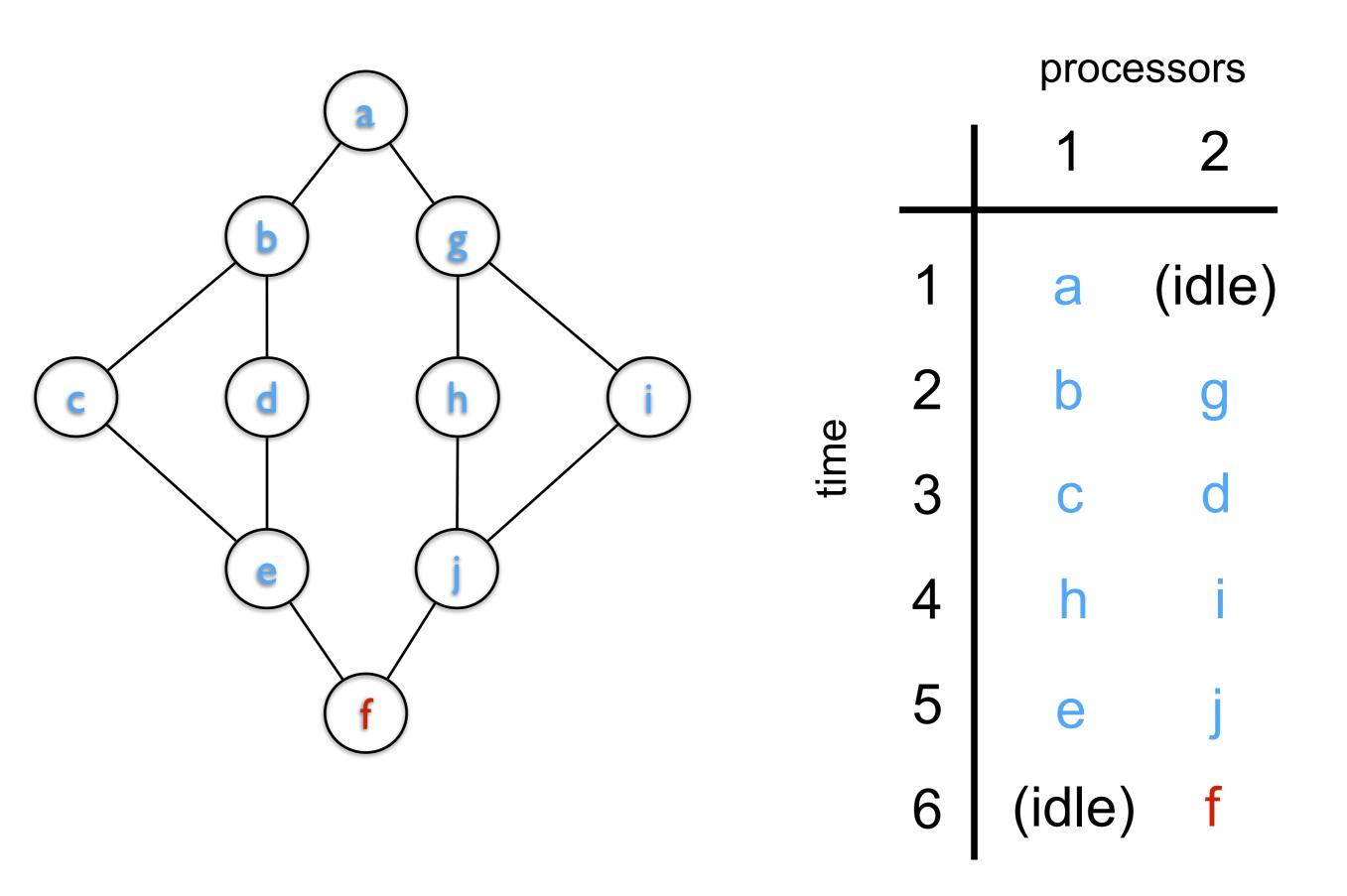




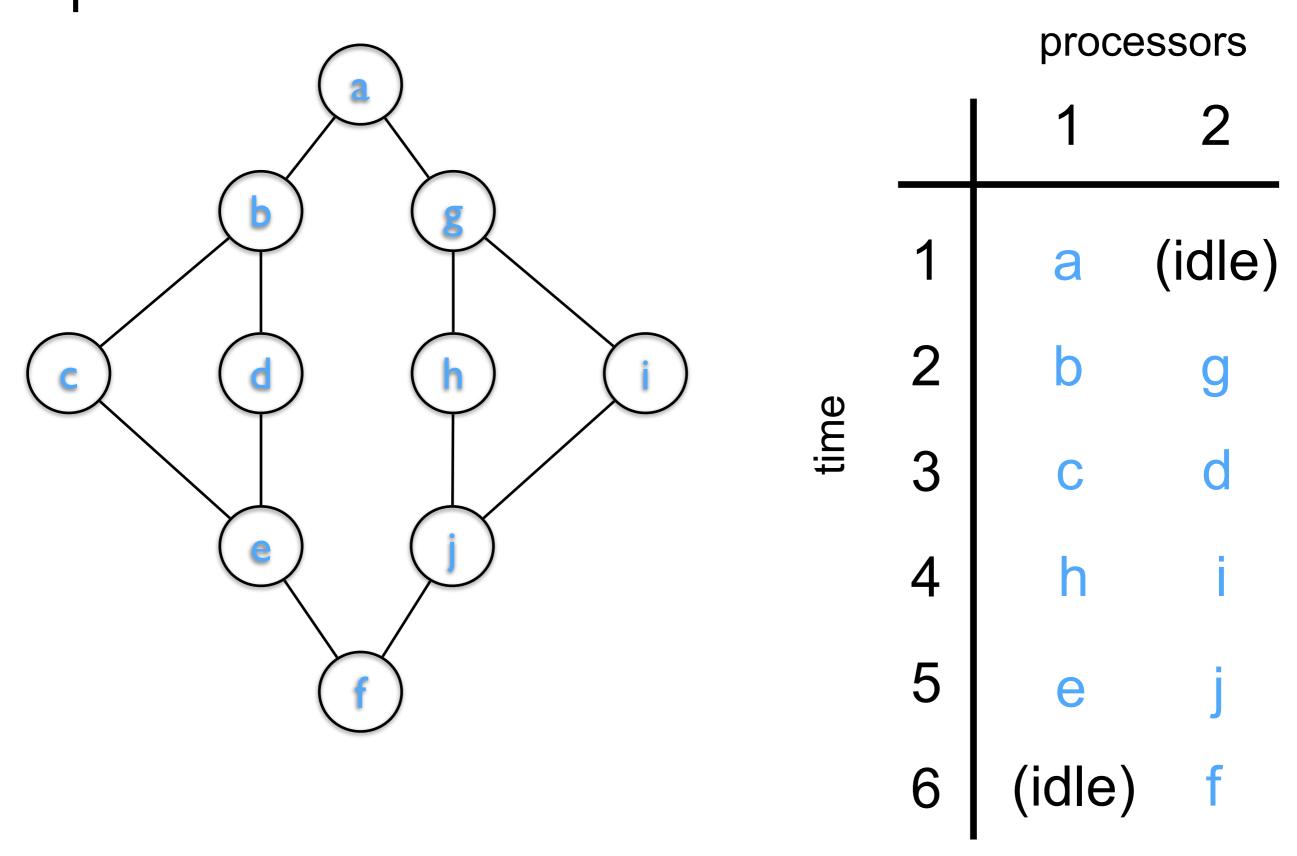








work = 10span = 5



next

- Exploiting parallelism in ML
- A signature for parallel collections
- Cost analysis of implementations
- Cost benefits of parallel algorithm design

sequences

```
signature SEQ =
sig
  type 'a seq (* abstract *)
  exception Range of string
  val empty: unit ->'a seq
  val tabulate: (int -> 'a) -> int -> 'a seq
  val length: 'a seq -> int
  val nth: 'a seq -> int -> 'a
  val map : ('a -> 'b) -> 'a seq -> 'b seq
  val reduce : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a
  val mapreduce : ('a -> 'b) -> 'b -> ('b * 'b -> 'b) -> 'a seq -> 'b
  val filter: ('a -> bool) -> 'a seq -> 'a seq
end
```

implementations

- Many ways to implement the signature
 - lists, balanced trees, arrays, ...
- For each one, can give a cost analysis
- There may be implementation trade-offs
 - arrays: item access is O(1)
 - trees: item access is O(log n)

Seq:SEQ

- An abstract parameterized type of sequences
- Think of a sequence as a parallel collection
- With parallel-friendly operations
 - constant-time access to items
 - efficient map and reduce

sequence values

A value of type t seq is a sequence of values of type t

We use math notation like

Reminder:
A client would
write t Seq.seq

for sequence values

 $\langle 1, 2, 4, 8 \rangle$ is a value of type int seq

equivalence

 Two sequence values are extensionally equivalent iff they have the same length and have extensionally equivalent items at all

```
\langle v_0, ..., v_{n-1} \rangle \cong \langle u_0, ..., u_{m-1} \rangle

if and only if

n \cong m and for all i, v_i \cong u_i
```

operations

For our given structure Seq: SEQ, we specify

- the (extensional) behavior
- the cost semantics

of each operation

Other implementations of SEQ may achieve different work and span profiles

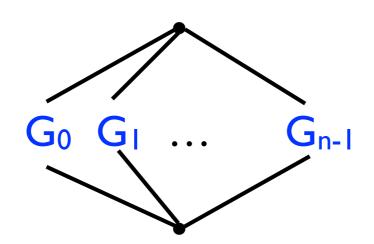
Learn to choose wisely!

empty () returns (>

- Type can be t seq for any type t
- Cost graph

tabulate f n
$$\approx \langle f 0, ..., f(n-1) \rangle$$

If G_i is cost graph for f(i),
 the cost graph for tabulate f n is



If f is O(I), the work for tabulate f n is O(n) If f is O(I), the span for tabulate f n is O(I)

tabulate f n $\approx \langle f 0, ..., f(n-1) \rangle$

examples

- tabulate (**fn** x:int => x) 6 (0, 1, 2, 3, 4, 5)
- tabulate (**fn** x:int => x^*x) 6 (0, 1, 4, 9, 16, 25)

$$nth \ \langle v_0, ..., v_{n-1} \rangle \ i \cong v_i \\ \cong \textbf{raise} \ Range \qquad otherwise$$

- Work is O(I)
- Span is O(1)
- Cost graph is

Contrast: List.nth work, span O(n)

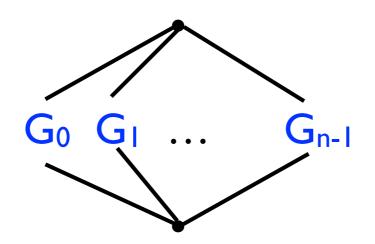
length
$$\langle v_0, ..., v_{n-1} \rangle \cong n$$

- Work is O(I)
- Span is O(1)
- Cost graph is

Contrast: List.length $[v_0,...,v_{n-1}] \cong n$ work, span O(n)

map
$$f \langle v_0, ..., v_{n-1} \rangle \cong \langle f v_0, ..., f v_{n-1} \rangle$$

map $f(v_0, ..., v_{n-1})$ has cost graph



where each Gi G_0 G_1 ... G_{n-1} is cost graph for f_0 v_i

• If f is constant time, map $f(v_0, ..., v_{n-1})$ has work O(n), span O(1)

(contrast with List.map)

reduce

reduce is used to combine a sequence

reduce: ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a

Compare it with

foldr: ('a * 'b -> 'a) -> 'b -> 'a list -> 'b

reduce

reduce g z
$$\langle v_0, ..., v_{n-1} \rangle \cong v_0 \odot v_1 ... \odot v_{n-1} \odot z$$

where g is an associative function with a base value z where we represent g with the infix operator \odot

• g:t*t->t is **associative** iff for all $x_1,x_2,x_3:t$

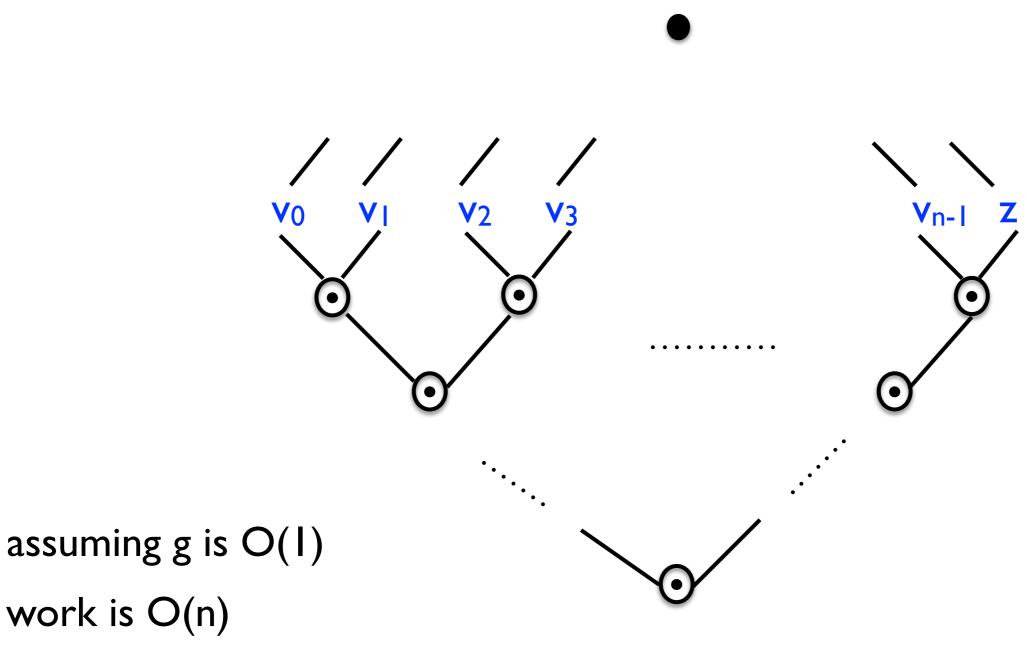
$$g(x_1, g(x_2, x_3)) = g(g(x_1, x_2), x_3)$$

• Sometimes we will assume that z is an identity element for g, i.e. for all x:t, g(x,z) = x

reduce g z
$$\langle v_0, ..., v_{n-1} \rangle \cong v_0 \odot v_1 ... \odot v_{n-1}$$

reduce g z $\langle \rangle \cong z$

reduce g z $\langle v_0, ..., v_{n-1} \rangle \cong v_0 \odot v_1 ... \odot v_{n-1} \odot z$



work is O(n)
span is O(log n)

mapreduce f z g $\langle v_0, ..., v_n \rangle \cong (f v_0) \odot \cdots \odot (f v_{n-1}) \odot z$

assuming f and g are O(1)

has work O(n)

and span O(log n)

filter p s ≅ s'

with S' a sequence consisting of all x_i in S such that p(x) true for all x_i in S. The order of retained elements in S' is the same as in S

Assuming p is O(1), has work O(n)

and span O(log n)

mapreduce f z g $\langle v_1, ..., v_n \rangle$ = (f v_1) g ... g (f v_n) g z

Example: filter

```
val singleton: 'a -> 'a seq (* gives a single element
                               sequence *)
val append: 'a seq * 'a seq -> 'a seq
fun filter (p: 'a -> bool) : 'a seq -> 'a seq =
       let val nothing = empty ()
          fun keep x = if p(x) then singleton x
                        else nothing
       in
         mapreduce keep nothing append
       end
```

 $S(n) = O(\log n), W(n) = O(n \log n)$ assuming append has span O(1)

Example: count

using map

fun sum (s : int Seq.seq) : int =

type row = int Seq.seq type room = row Seq.seq

fun count (class: room) : int = sum _____

Example: count

using map

fun sum (s:int Seq.seq):int = Seq.reduce (op +) 0 s

type row = int Seq.seq type room = row Seq.seq

fun count (class: room) : int = sum _____

Example: count

using map

fun sum (s : int Seq.seq) : int = Seq.reduce (op +) 0 s

```
type row = int Seq.seq
type room = row Seq.seq
```

fun count (class: room) : int = sum (Seq.map sum class)

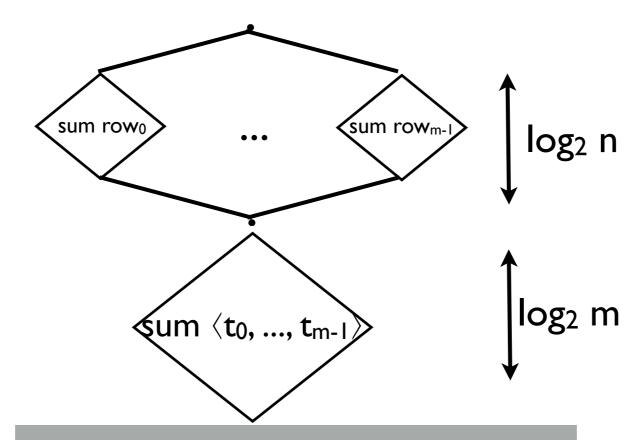
analysis

Let $t_i = sum row_i$

m rows of length n each

count $s = sum \langle t_0, ..., t_{m-1} \rangle$

cost graph of sum (map sum s)



work is O(mn)
span is O(log n+ log m)

mapreduce f z g $\langle v_1, ..., v_n \rangle$ = (f v_1) g ... g (f v_n) g z

Alternatively

using mapreduce

fun sum (s:int Seq.seq):int = Seq.reduce (op +) 0 s

```
type row = int Seq.seq
type room = row Seq.seq
```

fun count (class: room) : int = Seq.mapreduce sum 0 (op +) class