15-150 Fall 2019
Lecture 15

Stephen Brookes

1 Topics

• Using modules to design large programs
• Using modules to encapsulate common idioms
• Signatures and structures

In class we discussed transparent and opaque uses of signatures. Make sure that you read the slides from class in addition to this chapter. The lecture was organized around a motivating problem about the computation of large factorials, which gave us a good reason to look for a more sophisticated way to represent integers. That’s what motivated the Dec structure design that we introduce here again. Here we also give a little more detail about the correctness of our code.
2 Background

ML has a module system that helps when designing large programs. With good modular design, you can

- divide your program up into smaller, more easily manageable, chunks called modules (or structures);
- for each structure, specify an interface (or signature) that limits the way it interacts with the rest of the program.

Modularity can bring practical benefits:

- separate development – structures can be implemented independently, knowing only the signatures of other modules to be built later or being developed simultaneously
- clients have limited access to what’s in a structure, constrained by a signature, which may prevent misuse of data and malicious attempts to create buggy code
- easy maintenance – we can recompile one module without disrupting others, as long as we obey the interface constraints and the new module conforms to the same signature as before.

You can also use modules to group together related types and functions, and to encapsulate a commonly occurring pattern, such as a type equipped with certain operations. A good example of this is an abstract data type, and using modular design we can ensure that users of an a.d.t. are only allowed to build values that are guaranteed to obey some desired properties, such as being a binary search tree. We can hide from users the details of exactly how data is represented, and provide for their use only a limited collection of operations that know about the representation and guarantee some desired behavior.
3 Main ideas

A signature is an interface specification that lists some types, functions, and values. For example, here is an ML signature declaration:

```ml
signature ARITH =
  sig
    type integer
    val rep : int -> integer
    val display : integer -> string
    val add : integer * integer -> integer
    val mult : integer * integer -> integer
  end
```

This declaration introduces a signature named **ARITH** that amounts to an interface including:

- a type named **integer**
- a function named **rep**, of type \(\text{int} \rightarrow \text{integer}\)
- a function named **display**, of type \(\text{integer} \rightarrow \text{string}\)
- functions named **add** and **mult**, of type \(\text{integer} \times \text{integer} \rightarrow \text{integer}\).

Just introducing this signature like this doesn’t actually cause the creation or availability of any such types or values. (The ML REPL will just parrot back to us the signature definition.) To generate data we need to **implement** the signature, by building a **structure** that fills in the missing details. There are many different ways to do this, as we will see. Here is one, which we will refer to as the “standard” implementation, because it implements the type **integer** as the ML type **int**.

Before continuing, note that we included in the signature **ARITH** a type intended to serve to represent integers, a function **rep** that can be used to create a representation for an integer from a value of type **int**, operations called **add** and **mult** for combining integer representations, and a function **display** that can be used to extract a string from an integer representation. To keep things clear, we use the term “integer representation” for a value of type **integer**, and “integer” for a value of type **int**.

Here is an ML structure declaration, for a structure named **Ints**. Here we annotate the declarations inside the structure body with type information,
although most of these annotations could safely be erased as ML will figure out most general types as usual.

```ml
structure Ints =
struct
  type integer = int
  fun rep (n:int):integer = n
  fun display (n:integer):string = Int.toString n
  val add:integer * integer -> integer = (op +)
  val mult:integer * integer -> integer = (op * )
end
```

Note that we put a space between the * and the) so that the parser doesn’t read a comment symbol. We use the built-in function `Int.toString` of type `int -> string`. It would have been equally appropriate to have written instead

```ml
fun add(x:integer, y:integer) : integer = x + y
```

and similarly for `mult`. The order in which we list the declarations inside this structure body is irrelevant; it happens here to be the same order as in the signature `ARITH`, but that isn’t required. In fact this structure exists all by itself, even without knowledge of the existence of the `ARITH` signature. If we enter this structure declaration into the ML REPL we get the response

```ml
structure Ints :
  sig
    type integer = int
    val rep : int -> integer
    val display : integer -> string
    val add : integer * integer -> integer
    val mult : integer * integer -> integer
  end
```

and again this looks suggestively like a typing statement: the structure `Ints` has the signature reported above.

In fact this signature, the one inferred for `Ints` by the ML type system, is *almost* the same signature as the one we called `ARITH`. The only difference is that here we see that the type `integer` is reported to be `int`.

It would have been just as acceptable to write
structure Ints =
struct
 type integer = int
 fun rep (n:int):integer = n
 fun display (n:int):string = Int.toString n
 val add:int * int -> int = (op +)
 val mult:int * int -> int = (op *)
end

because the ML type inference engine works equally well. Also the order in which the function names are listed is not important.

To indicate our intention to use the Ints structure as an implementation of the ARITH signature, we can ascribe this signature explicitly, by annotating the structure definition, as in:

structure Ints : ARITH =
struct
 type integer = int
 fun rep (n:int):integer = n
 fun display (n:integer):string = Int.toString n
 val add:integer * integer -> integer = (op +)
 val mult:integer * integer -> integer = (op *)
end

From this example you may see that signatures can play a similar role for structures as types do for values. This time the ML REPL will respond

structure Ints : ARITH

and we must go back and look at the signature to see that ML is telling us that Ints makes visible the following:

 type integer
 val rep : int -> integer
 val display : integer -> string
 val add : integer * integer -> integer
 val mult : integer * integer -> integer

but the signature alone does not tell us the fact that integer is implemented as the type int. Having made this structure definition, we can use the data
defined inside, but because they appear inside the structure body we need to use “qualified names”. For example, \texttt{Ints.add} is a name we can use to call the \texttt{add} function defined inside \texttt{Ints}. And the following code fragment will type-check:

\begin{verbatim}
Ints.add(Ints.rep 21, Ints.rep 21);
\end{verbatim}

its type is \texttt{Ints.integer} and its value is 42.

We’ve already seen some other uses of this kind of qualified name. The ML implementation contains several built-in structures with standard signatures – the ML Basis Library. Among these are structures such as \texttt{String}, and the signature for \texttt{String} includes

\begin{verbatim}
compare : string * string -> order
\end{verbatim}

Similarly there is a structure called \texttt{Int}, whose signature includes

\begin{verbatim}
compare : int * int -> order
\end{verbatim}

To disambiguate between these two functions we call them

\begin{verbatim}
String.compare : string * string -> order
Int.compare : int * int -> order
\end{verbatim}

(We chose to name our structure \texttt{Ints}, to avoid clashing with \texttt{Int}.)

We could have ascribed a different signature that makes fewer things visible to users of the structure. For example, the signature

\begin{verbatim}
signature ARITH2 =
sig
 type integer
 val rep : int -> integer
 val mult : integer * integer -> integer
end
\end{verbatim}

doesn’t include \texttt{add} or \texttt{display}. If we defined

\begin{verbatim}
structure Ints2 : ARITH2 =
struct
 type integer = int
 fun rep (n:int):integer = n
 fun display (n:integer):string = Int.toString n
 val add:integer * integer -> integer = (op +)
 val mult:integer * integer -> integer = (op *)
end;
\end{verbatim}
we would only be allowed to use

\[
\text{Ints2.rep} \\
\text{Ints2.mult}
\]

and the type \text{Ints2.integer}, but \text{Ints2.add} and \text{Ints2.display} would be disallowed.

The same problems would occur if we defined

\[
\text{structure Ints2 : ARITH2 = Ints;}
\]

Note that as here we can define a structure like this, by binding a name (\text{Ints2}) to an existing structure (\text{Ints}) and constrain its use to a given signature (ARITH2).

Decimal digit representation of integers

Now let’s look at another way to implement ARITH: representing “integer” values as lists of decimal digits (in reverse order, with least significant digit first; this order makes digitwise arithmetic operations easy). We’ll define a structure \text{Dec}, and give it the signature ARITH. Inside this structure we’ll include some local functions and local type declarations, which we use inside the structure to help with the code implementation, but which (being locally scoped and not included in the signature ARITH) are not available to users of the \text{Dec} structure. This illustrates the usefulness of signatures as a way of hiding information that we don’t want to be seen. We can easily prevent users from having access to helper functions that are needed inside the structure, simply by omitting them from the signature that we “ascribe” to the structure. In the example above we ascribed the signature ARITH to the structure named \text{Int}.

\[
\text{structure Dec : ARITH =} \\
\text{struct}
\]

\[
\text{type digit = int (* uses 0 through 9 *)} \\
\text{type integer = digit list}
\]

\[
\text{fun rep 0 = [] | rep n = (n mod 10) :: rep (n div 10)}
\]

\[
(* \text{carry : digit * integer \to integer *})
\]
fun carry (0, ps) = ps
 | carry (c, []) = [c]
 | carry (c, p::ps) = ((p+c) mod 10) :: carry ((p+c) div 10, ps)

fun add ([], qs) = qs
 | add (ps, []) = ps
 | add (p::ps, q::qs) = ((p+q) mod 10) :: carry ((p+q) div 10, add(ps,qs))

(* times : digit -> integer -> integer *)
fun times 0 qs = []
 | times k [] = []
 | times k (q::qs) =
 ((k * q) mod 10) :: carry ((k * q) div 10, times k qs)

fun mult ([], _) = []
 | mult (_, []) = []
 | mult (p::ps, qs) = add (times p qs, 0 :: mult (ps,qs))

fun display L = foldl (fn (d, s) => Int.toString d ^ s) "" L
end

carry and times are “helper” functions, used only inside this structure. They aren’t listed in the signature, so we included their types in comments to help others understand our intentions.

Notice that the structure Dec does indeed conform to the signature: it does define

• a type named integer (implemented as int)
• a function value named rep, of type int -> integer
• a function value named display, of type integer -> string
• function values named add and mult, each of type integer * integer -> integer.

The functions carry and times, and the type digit, are local to this structure, not part of the signature.

In the rest of this section we will discuss the behavior of these functions in more detail. To avoid always having to use qualified names like Dec.add, let’s assume that we’ve entered the following text into the ML REPL loop:
open Dec;

That brings all of the signature items into scope so we can refer to them simply as **add** and so on. (However, the local items like **carry** are not in scope. We can't ask ML to evaluate **carry** (0, []).)

Examples:

rep 123 = [3,2,1]
rep 0 = []
rep 000 = []
rep (12+13) = [5,2]
add([2,1], [3,1]) = [5,2]

Every value of type Dec.**integer** built from **rep**, **add**, **mult** is a list of decimal digits. Explain why.

To establish the “correctness” of this implementation, we introduce the following helper functions:

(* inv : int list -> bool *)
fun inv [] = true
| inv (d::L) = 0 <= d andalso d <= 9 andalso inv L

(* eval : int list -> int *)
fun eval [] = 0
| eval (d::L) = d + 10 * eval(L)

(* For all non-negative integers n, eval(rep n) = n *)

The purpose of these functions is to help us make a sensible specification of what it means for this implementation to be “correct”.

First, the following basic facts are easy to establish (by induction, as usual):

- For all L:int list, inv(L) = true iff L is a list of decimal digits.
- For all non-negative integers n, rep(n) evaluates to a list L such that inv(L) = true.
- For all L:int list such that inv(L) = true, i.e. for all lists L of decimal digits, eval L is a non-negative integer. We call this the integer represented by L.
• For all non-negative integers \(n \), there is a list \(L \) of decimal digits such that \(\text{rep} \ n = L \). In fact there are many such lists, differing only in the number of “leading zeros”.

• For all non-negative integers \(n \), \(\text{rep}(n) \) is a list of decimal digits such that \(\text{eval}(\text{rep}(n)) = n \).

Some examples:

\[
\text{rep} \ 1230 = [0,3,2,1] \\
\text{eval} \ [0,3,2,1] = 0 + 10 \ast (\text{eval} \ [3,2,1]) \\
\quad = 10 \ast (3 + 10 \ast (2 + 10 \ast (1 + 10 \ast \text{eval} \ []))) \\
\quad = 10 \ast (3 + 10 \ast (2 + 10 \ast (1 + 10 \ast 0))) \\
\quad = 10 \ast (3 + 10 \ast (2 + 10 \ast (1 + 0))) \\
\quad = 123
\]

\[
\text{eval} \ [0,3,2,1,0] = 123
\]

\[
\text{display}(\text{mult}(\text{rep} \ 10, \text{rep} \ 20)) = "200"
\]

So now we’ve introduced some tools (\text{eval} and \text{inv}) to help us talk accurately about what it means for a value of type \text{Dec.integer} to be a list of decimal digits, and for such a value to “represent” a given integer \(n \). We can also use these tools to define “correctness” for the operations \text{add} and \text{mult}:

• For all values \(L,R: \text{int list} \), if \(\text{inv}(L) = \text{true} \) and \(\text{inv}(R) = \text{true} \), then \(\text{add}(L, R) \) evaluates to a list \(A \) such that \(\text{inv}(A) = \text{true} \), and \(\text{eval}(A) = \text{eval}(L) + \text{eval}(R) \).

• For all values \(L,R: \text{int list} \), if \(\text{inv}(L) = \text{true} \) and \(\text{inv}(R) = \text{true} \), then \(\text{mult}(L, R) \) evaluates to a list \(A \) such that \(\text{inv}(A) = \text{true} \), and \(\text{eval}(A) = \text{eval}(L) \ast \text{eval}(R) \).

To prove these results about \text{add} and \text{mult} we’ll need lemmas about the behavior of \text{carry} and \text{times}. What lemmas? We need the following, which are easy to prove by induction on list length:

• For all \(L: \text{int list} \) and \(c: \text{int} \), if \(\text{inv}(L) = \text{true} \) and \(0 \leq c \leq 9 \), then \(\text{inv}(\text{carry}(c, L)) = \text{true} \) and \(\text{eval}(\text{carry}(c, L)) = c + \text{eval}(L) \).

• For all \(L: \text{int list} \) and \(c: \text{int} \), if \(\text{inv}(L) = \text{true} \) and \(0 \leq c \leq 9 \), then \(\text{inv}(\text{times}(c, L)) = \text{true} \) and \(\text{eval}(\text{times}(c, L)) = c \ast \text{eval}(L) \).
Here is a quick proof sketch for the lemma about `carry`.

For all `L:int list` and `c:int` such that `inv(L) = true` and `0 ≤ c ≤ 9`, `inv(carry(c, L)) = true` and `eval(carry(c, L)) = c + eval L`.

Proof: by induction on the length of `L`.

- Base case: for `L = []`. Let `0 ≤ c ≤ 9`. Note that `inv [] = true`, and `carry(c, []) = [c]`. Since `0 ≤ c ≤ 9`, `inv [c] = true`. And `eval [c] = c = c + 0 = c + eval []`.

- Inductive step: Let `L = d::ds`, `inv(d::ds) = true`, and `0 ≤ c ≤ 9`.
 Assume as induction hypothesis that for all lists `R` shorter than `d::ds` and all `c'`, if `inv(R) = true` and `0 ≤ c' ≤ 9`, then `inv(carry(c', R)) = true` and `eval(carry(c', R)) = c' + eval R`.
 By assumption, `0 ≤ d ≤ 9` and `inv(ds) = true`.
 We have, by the function definitions:

 \[
 carry(c, d::ds) = ((c+d) \mod 10) :: carry((c+d) \div 10, ds)
 \]

 Let `c'` be the value of `(c+d) \div 10`. Then `0 ≤ c' ≤ 1`. (Why?)
 Since `ds` is a shorter list than `d::ds` and `inv(ds) = true`, it follows from the induction hypothesis that `inv(carry(c', ds)) = true` and `eval(carry(c', ds)) = c' + eval ds`.
 By definition of `eval` we then have

 \[
 eval (carry(c, d::ds))
 = eval ((c+d) \mod 10) :: carry(c', ds))
 = (c+d) \mod 10 + 10 * eval(carry(c', ds))
 = (c+d) \mod 10 + 10 * (c' + eval ds)
 = (c+d) \mod 10 + 10 * c' + 10 * eval ds
 = (c+d) \mod 10 + 10 * ((c+d) \div 10) + 10 * eval ds
 = (c+d) + 10 * eval ds
 = c + (d + 10 * eval ds)
 = c + eval(d::ds),
 \]

 as required.
Exercise: prove the lemma about `times`, which can be done similarly to the lemma about `carry`. Then use the two lemmas to prove the above properties of `add` and `mult`. Note the vital importance in these proofs of the fundamental property that relates `div` and `mod`: for all `n:int`,
\[
n = 10 \times (n \div 10) + (n \mod 10).
\]

So we’ve verified the correctness of this implementation of arithmetic: integer values are represented faithfully and the addition and multiplication operations on represented integers produce results faithful to the abstract operations `+` and `*`.

Moreover we can use this `Dec` structure to do arithmetical calculations on integer representations that would, if done directly using the built-in type `int`, encounter overflow problems. Here is an example: computing the factorial of an integer (e.g. 100) whose factorial is too large to be an allowed value of type `int`.

(* fact : int -> integer *)
fun fact n =
 if n=0 then rep 1 else mult (rep n, fact (n-1));

Note the type: `fact` takes an ML integer and returns a list of decimal digits.
For all non-negative `n`, `eval(fact n)` represents the factorial of `n`.

(* List.rev(fact 100) =
 [9,3,3,2,6,2,1,5,4,4,3,9,4,4,1,5,2,6,8,1,6,9,9,2,3,8,8,5,6,2,6,6,7,0,0,
 4,9,0,7,1,5,9,6,8,2,6,4,3,8,1,6,2,1,4,6,8,5,9,2,9,6,3,8,9,5,2,1,7,5,9,
 9,9,9,3,2,2,9,9,1,5,6,0,8,9,4,1,4,6,3,9,7,6,1,5,6,5,1,8,2,8,6,2,5,3,6,
 9,7,9,2,0,8,2,7,2,2,3,7,5,8,2,5,1,1,8,5,2,1,0,9,1,6,8,6,4,0,0,0,0,0,0,
 0,0]*

(Note: we reverse the list, because when we write out a number in decimal notation the least significant digits go on the right, not the left.) Thus, the factorial of 100 is

93326215443944152681699238856266700490715968264
38162146859296389521759999322991560894146397615
6518286253697920827223758251185210916864000000000000000000000000

display(fact 100) =
"93326215443944152681699238856266700490715968264
38162146859296389521759999322991560894146397615
6518286253697920827223758251185210916864000000000000000000000000"
Binary representation

Actually there’s nothing special about decimal: we could use binary just as well. The following structure is the binary digit version.

```
structure Bin : ARITH =
  struct
    type digit = int (* uses 0, 1 *)
    type integer = digit list
    fun rep 0 = [ ] | rep n = (n mod 2) :: rep (n div 2)

    (* carry : digit * integer -> integer *)
    fun carry (0, ps) = ps
    | carry (c, [ ]) = [c]
    | carry (c, p::ps) = ((p+c) mod 2) :: carry ((p+c) div 2, ps)

    fun add ([ ], qs) = qs
    | add (ps, [ ]) = ps
    | add (p::ps, q::qs) =
        ((p+q) mod 2) :: carry ((p+q) div 2, add (ps,qs))

    (* times : digit -> integer -> integer *)
    fun times 0 qs = [ ]
    | times k [ ] = [ ]
    | times k (q::qs) =
        ((k * q) mod 2) :: carry ((k * q) div 2, times k qs)

    fun mult ([ ], _) = [ ]
    | mult (_ , [ ]) = [ ]
    | mult (p::ps, qs) = add (times p qs, 0 :: mult (ps,qs))

    fun display L = foldl (fn (d, s) => Int.toString d ^ s) "" L
  end
```
4 Information hiding

So far we have given an example in which we ascribed a signature to a structure, using a colon. This notation resembles the way you can add type annotations. By ascribing a signature like this we can limit the availability of values defined in a structure: only those values mentioned in the signature are available, and moreover are only usable at the types specified in the signature.

Revisiting the Ints example, let’s see what happens if we omit the type annotations, as in:

```ml
structure Ints =
struct
  type integer = int
  fun rep n = n
  fun display n = Int.toString n
  val add:int * int -> int = (op +)
  val mult:int * int -> int = (op * )
end
```

In response, ML says:

```ml
structure Ints : sig
  type integer = int
  val rep : 'a -> 'a
  val display : integer -> string
  val add :integer * integer -> integer
  val mult :integer * integer -> integer
end
```

So actually the most general types of the functions defined in this structure are not exactly what the signature ARITH says: the type for `rep` is *more general* than necessary. But this is OK, since we can safely use `rep` at type `int -> integer` when `integer` is defined to be `int`.

Ascribing the signature ARITH with `:`, as in

```ml
structure Ints1 : ARITH = Ints
```

will produce a structure with the same data as `Ints` and will allow users to know that the type `integer` is defined as `int`. ML says
structure Ints1 : sig
 type integer = int
 val rep : int -> integer
 val display : integer -> string
 val add :integer * integer -> integer
 val mult :integer * integer -> integer
end

This ascription also limits the type of rep to the one given in the signature. Because this kind of ascription reveals the definitions of types whose name is present in the signature, we refer to this as transparent ascription.

Ascribing the signature ARITH opaquely, with :> instead of :, as in

structure Ints2 :> ARITH = Ints

will produce a structure with the same data as Ints but will prevent users from knowing that the type integer is defined as int. ML says

structure Ints2 : sig
 type integer
 val rep : int -> integer
 val display : integer -> string
 val add :integer * integer -> integer
 val mult :integer * integer -> integer
end

What are the differences? Users of Ints1 can treat values of type integer exactly the same ways they can treat values of type int. Users of Ints2 cannot.

21 + Ints1.rep 21 =>* 42 : int
21 + Ints2.rep 21 is not well-typed

You can see the difference also in the way ML responds:

- Ints1.rep 0;
val it = 0 : Ints1.integer

- Ints2.rep 0;
val it = - : Ints2.integer
5 Self-test

1. Develop a structure called Neg that implements the signature ARITH and represents a non-negative integer value \(n \) as its negative, i.e. the value \(\neg n \). Be sure to implement addition and multiplication correctly using this representation. You can fill your solution into the template below:

   ```plaintext
   structure Neg : ARITH =
   struct
     type integer = int
     fun rep n = \( \neg n \)
     fun add (x, y) =
     fun mult (x, y) =
     fun display x =
   end
   ``

   How could you prove that your implementation is faithful to standard arithmetic on non-negative integers? What basic facts about integer arithmetic do you rely on?

2. Using Neg, write a function \( \text{fact} : \text{int} \rightarrow \text{Neg.integer} \) such that for all \( n \geq 0 \), \( \text{fact} \ n \) evaluates to a representation of \( n! \). HINT: This is EASY!

3. Do the proof that the Dec implementation of ARITH has the property that:
   
   For all \( n \geq 0 \), eval(rep n) = n.

4. Here is a signature declaration for SIM, consisting of a type named \( t \) and a function \( \text{similar} : t \times t \rightarrow \text{bool} \) that says if two values of type \( t \) are deemed to be “similar”.

   ```plaintext
 signature SIM =
 sig
 type t
 val similar : t * t -> bool
 end
   ```
Define two ML structures named \texttt{StringCase} and \texttt{StringTypo} that implement this signature, in each case with the type \texttt{t} being \texttt{string}. For \texttt{StringCase} two strings are deemed similar iff they are identical modulo capitalization. For \texttt{StringTypo} two strings are similar iff they differ in at most one character.

For example,
\begin{verbatim}
StringCase.similar("Standard ML", "stanDArd ml") = true
StringTypo.similar("Stabdard ML", "Standard ML") = true
\end{verbatim}

You can use \texttt{explode : string -> char list}, and assume given a function \texttt{capitalize : string -> string} such that \texttt{capitalize s} is the string obtained from \texttt{s} by converting its characters into upper case. For example, \texttt{capitalize "spam" = "SPAM"}. Remember that \texttt{string} and \texttt{char} are equality types.

5. Discuss and contrast the relative merits of ascribing the signature \texttt{SIM} to the structure \texttt{StringCase} transparently or opaquely. In each case what would users be allowed to do?