case study

- **Direct-** and **continuation**-style programming
 - two different ways to solve the *same* problem
- Benefits and disadvantages…
 - taking advantage of math to ensure *correctness* and *efficiency*
the bishops problem

- Put m bishops onto an n-by-n chessboard safely.
 - bishops *attack* along diagonals
 - *safe* = each bishop is attacked by at most one other
the bishops problem

- Find a way to put m bishops onto an n-by-n chessboard safely, if possible.

```plaintext
bishops : int -> int -> (int * int) list option

bishops n m = SOME L
where L is a safe placement for m bishops
on an n-by-n chessboard, if possible

bishops n m = NONE
otherwise
```
What’s the largest number of bishops that can be safely placed on an n-by-n chessboard?

\[
\text{most_bishops} : \text{int} \rightarrow \text{int}
\]

\[
\text{most_bishops} n = m,
\]

where \(m \) is the largest number of bishops that can safely be placed on the n-by-n chessboard.
basic types

Type Definitions

- `type pos = int * int`
- `type sol = pos list`
- `type state = sol * pos list`
- `type ans = sol option`

Explanations

- A position is a cell or square (x,y).
- A (partial) solution is a list of positions.
- A `state` is a (partial) solution and a list of remaining positions.
- An `answer` is SOME solution or NONE.
fun upto i j = if i>j then [] else i :: upto (i+1) j

fun cart ([], B) = []
| cart (a::A, B) = map (fn b => (a, b)) B @ cart (A, B)

fun board n = let val xs = upto 1 n in cart (xs, xs) end

board 8 represents the 8-by-8 chessboard
example

- board 3;
val it = [(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)] : (int * int) list
counting threats

threats : pos * pos -> int
attacks : pos list -> pos -> int

fun threats ((x, y), (i, j)) = if abs(x-i) = abs(y-j) then 1 else 0

fun attacks bs b = foldr (op +) 0 (map (fn p => threats (p, b)) bs)

attacks [b₁,...,b₅] b = 4
safe

forall : (pos -> bool) -> pos list -> bool
safe : pos list -> bool

fun forall p = foldr (fn (x, t) => (p x) andalso t) true
fun safe bs = forall (fn b => (attacks bs b <= 2)) bs

why 2?

unsafe:
b3 threatened by b1 and b2
safe spec

safe : pos list -> bool

ENSURES

safe bs = true,
 if each cell in bs is attacked by at most one other

safe bs = false,
 otherwise
direct-style design

- Start with the obvious initial state (empty partial solution, all squares are candidates)

- Use a helper function that finds a list of the safe ways to extend a state with one more bishop

- A searching function that maintains a list of candidate states to be explored, and looks for a satisfactory solution reachable from one of these states

 “depth-first search”
fun init n = ([], board n)

fun del b [] = []
| del b (c::cs) = if b=c then cs else c::del b cs

fun steps (bs, rest) =
 let
 val R = List.filter (fn b => safe(b::bs)) rest
 in
 map (fn b => (b::bs, del b rest)) R
 end
steps : state -> state list

steps (bs, rest) =
 a list of all safe ways to extend bs with a bishop drawn from rest.

Each element of this list is a state
 (b::bs, del b rest),
where b is in rest and safe (b::bs) = true.

steps ([b1,b2,b3,b4], rest) has length 51
valid states

- A state \((bs, \text{rest})\) is \textit{valid} iff \(\text{safe}(bs) = \text{true}\)

- All states generated from \textit{init n} using \textit{steps} are valid

 - \textit{init n} is a valid state

- When \((bs, \text{rest})\) is valid, \textit{steps} \((bs, \text{rest})\) returns a list of valid states.
search

search : (sol -> bool) -> state list -> sol option

fun search p [] = NONE
| search p ((bs, rest)::states) =
 if (p bs) then SOME bs
 else search p (steps (bs, rest) @ states)

REQUIRES L is a list of valid states

search p L = SOME bs
where bs is a safe list satisfying p
reachable from a state in L,
if there is one

search p L = NONE
otherwise

type sol = pos list
bishops

bishops : int -> int -> sol option

fun bishops n m =
 search (fn bs => (length bs = m)) [init n]

bishops n m = SOME bs,
where bs is a safe placement of m bishops
on the n-by-n board,
if there is one

bishops n m = NONE,
if there is no safe placement of m bishops
on the n-by-n board

length m, reachable from ([], board n)
- bishops 6 14;
val it =
 SOME
 [(6,6),(6,4),(6,3),(6,1),(5,6),(5,1),(3,5),
 (3,2),(1,6),(1,5),(1,4),(1,3),(1,2),(1,1)]

14 bishops safely on 6-by-6 board
more examples

- bishops 6 15;
 VERY SLOW...

- bishops 8 20;
 VERY SLOW..... (I gave up!)
the most bishops

most_bishops : int -> int

fun most_bishops n =
 let
 fun loop m =
 (print ("Trying " ^ Int.toString m ^ "\n");
 case (bishops n m) of
 SOME _ => loop (m+1)
 | NONE => m-1)
 in
 loop 1
 end
- most_bishops 6;
Trying 1
Trying 2
Trying 3
Trying 4
Trying 5
Trying 6
Trying 7
Trying 8
Trying 9
Trying 10
Trying 11
Trying 12
Trying 13
Trying 14
Trying 15

TAKING FOREVER…

The direct-style searcher is VERY SLOW
diagnosis

The search function does a lot of list-building and safety checking….

\[
\text{search } p \ ((bs, \ rest)::states) \\
\text{may call } \text{search } p \ (\text{steps } (bs, \ rest) \ @ \ states)
\]

- The number of candidate states grows
- steps (bs, rest) calls safe (b::bs) for each b in rest

In example, steps ([b_1,b_2,b_3,b_4], rest) has length 51

The work for safe L is O ((length L)^2)
a cps design

- Avoid explicitly enumerating lists of states

- Build a solver that works with a single “current” state, and looks for a satisfactory solution extending that state
 - only check for safety of the current solution
 - on success, call a **success continuation** with the current solution
 - on failure, call a **failure continuation** to backtrack and try remaining squares
solver

solver : (sol -> bool) -> state -> (sol -> ans) -> (unit -> ans) -> ans

solver p (bs, rest) s k

- p : sol -> bool criterion for “success"
- bs : sol current (partial) solution
- rest : pos list remaining board cells
- s : sol -> ans to be applied on “success”
- k : unit -> ans to be used on “failure”

type sol = pos list
type ans = sol option
solver spec

REQUIRES $p \text{ total, } bs \text{ safe}$

ENSURES

solver $p (bs, \text{ rest}) s k$

$= s(L),$

where L is a solution, satisfying p,

extending bs with bishops from rest,

if there is one

$= k(),$ otherwise

In each case, we get a result of type ans
fun solver p (bs, rest) s k =
 if p(bs) then s(bs) else
 case rest of
 [] => k()
 | b::cs => if safe (b::bs)
 then solver p (b::bs, cs) s (fn () => solver p (bs, cs) s k)
 else solver p (bs, cs) s k
backtracking

solver p (bs, b::cs) s k =>*
 if safe (b::bs) then
 solver p (b::bs, cs) s (fn () => solver p (bs, cs) s k)
 ...

• If b::bs is safe, but cannot be extended to success using cs, the failure continuation triggers solver p (bs, cs) s k
fun bishops n m =
 solver (fn bs => length bs = m) (init n) SOME (fn () => NONE)

bishops n m = SOME bs,
where bs is a safe placement of m bishops
on the n-by-n board,
if there is one

bishops n m = NONE,
if there is no safe placement of m bishops
on the n-by-n board

length m, reachable from ([], board n)
- bishops 6 14;
val it = SOME
 [(6,6),(6,4),(6,3),(6,1),(5,6),(5,1),(3,5),
 (3,2),(1,6),(1,5),(1,4),(1,3),(1,2),(1,1)]
- bishops 8 20;
val it =
SOME
[(8,8),(8,5),(8,4),(8,1),(7,8),(7,5),(7,4),(7,1),(6,8),(6,1),
 (3,7),(3,2),(1,8),(1,7),(1,6),(1,5),(1,4),(1,3),(1,2),(1,1)]

20 bishops safely on 8-by-8 board

FAST!
fun most_bishops n =
 let
 fun loop m =
 (print ("Trying " ^ Int.toString m ^ "\n");
 case (bishops n m) of
 SOME _ => loop(m+1)
 | NONE => m-1)
 in
 loop 1
 end
results

- most_bishops 6;
Trying 1
Trying 2
Trying 3
Trying 4
Trying 5
Trying 6
Trying 7
Trying 8
Trying 9
Trying 10
Trying 11
Trying 12
Trying 13
Trying 14
Trying 15
val it = 14 : int

FAST!!!!
- most_bishops 8;
Trying 1
Trying 2
Trying 3
Trying 4
Trying 5
Trying 6
Trying 7
Trying 8
Trying 9
Trying 10
Trying 11
Trying 12
Trying 13
Trying 14
Trying 15
Trying 16
Trying 17
Trying 18
Trying 19
Trying 20
Trying 21

SLOW!!!!

still room for improvement!
generality

• The *most general type* for **solver** is polymorphic!

\[
solver : (\text{sol} \to \text{bool}) \to \text{state} \to (\text{sol} \to 'a) \to (\text{unit} \to 'a) \to 'a
\]

REASON?
The specification says why...

For all types \(t \), and all \(s : \text{sol} \to t \) and \(k : \text{unit} \to t \),
\[
solver p (\text{bs, rest}) s k = s L,
\]
where \(L \) is a solution extending \(bs \)... if there is one
\[
= k(),
\]
otherwise

Behavior is *oblivious* of what \(s \) and \(k \) are. The “answer” type can be chosen later!
cps benefits

- Polymorphic solver type, very general spec
 - highly adaptable
 - write-once/use-many

- Better efficiency — runtime is visibly faster!
 - code design implements backtracking, and avoids list-building/safe-checking
improvements

• Can get faster performance by exploiting symmetry

 • black bishops and white bishops are independent
 so we can — in parallel —

 • find a way to place bishops on white squares

 • find a way to place bishops on black squares

• The safe check is quadratic in list length.
 This strategy works with shorter lists
 and avoids lots of unnecessary checking!
improvements

to the improvements

• Can get faster performance by exploiting symmetry

• black bishops and white bishops are independent

• find a way to place bishops on white squares

• deduce a way to put bishops on black squares

• When n is even, it’s easy to blacken a white solution!

(we don’t even need parallel evaluation!)
exercises

• Implement a smart solver (for n even) based on black/white independence

• Find some other solutions
 • e.g. non-symmetric placements

• Write a function that displays a solution as a picture

 draw : int -> sol -> string
 print (draw n L)
challenge

• Find a list of *all* safe placements for m bishops on an n-by-n board.

• You can assume n is even, again.

• And you can use `solver` from before, as a helper!