Most of today’s lecture followed the *Sorting Integer Lists* notes from Mike Erdmann. We did the correctness proofs a little differently, so the versions we did are reproduced here.

Lemma 1. For all lists \(a \) and \(b \), if \(a \) sorted and \(b \) sorted, then \(\text{merge} (a, b) \) sorted and \(\text{merge} (a, b) \) is a permutation of \(a@b \).

Proof. By simultaneous induction on \(a \) and \(b \).

Base case: \((\[\], b)\). To show: \(\text{merge} (\[\], b) \) sorted and \(\text{merge} (\[\], b) \) is a permutation of \(\[\]@b \).

Proof: \(\text{merge} (\[\], b) \cong b \) by clause 1 of \(\text{merge} \). By assumption, \(a \) sorted and by definition, \(b \) is a permutation of \(\[\]@b \ (\cong b \ by \ @) \).

Base case: \((a, \[\])\). To show: \(\text{merge} (a, \[\]) \) sorted and \(\text{merge} (a, \[\]) \) is a permutation of \(a@\[\] \).

Proof: \(\text{merge} (a, \[\]) \cong a \) by clause 1 of \(\text{merge} \). By assumption, \(a \) sorted and by definition. By correctness of \(@ \), \(a@\[\] \cong a \), and \(a \) is a permutation of \(a \).

Inductive step: \((x :: a, y :: b)\). To show: \(\text{merge} (x :: a, y :: b) \) sorted and \(\text{merge} (x :: a, y :: b) \) is a permutation of \((x :: a)@(y :: b) \).

IH1: \(\text{merge} (a, y :: b) \) sorted and \(\text{merge} (a, y :: b) \) is a permutation of \(a@(y :: b) \). IH2: \(\text{merge} (x :: a, b) \) sorted and \(\text{merge} (x :: a, b) \) is a permutation of \((x :: a)@b \). IH3: \(\text{merge} (a, b) \) sorted and \(\text{merge} (a, b) \) is a permutation of \(a@b \).

Proof: We split into cases on \(\text{compare} (x, y) \).

Case LESS. \(\text{merge} (x :: a, y :: b) \cong x :: \text{merge} (a, y :: b) \) by the first branch of the case.

By IH1, \(\text{merge} (a, y :: b) \) sorted. Since \(\text{compare} (x, y) \cong \text{true} \) and \(x :: a \) sorted, \(x :: \text{merge}(a, y :: b) \) sorted. By IH1, \(\text{merge} (a, y :: b) \) is a permutation of \(a@(y :: b) \).

Thus, \(x :: \text{merge} (a, y :: b) \) is a permutation of \((x :: a)@(y :: b) \).

The cases for \(\text{EQUAL} \) and \(\text{GREATER} \) are similar.

Theorem 1. For all lists \(l \), \(\text{msort} l \) sorted and \(\text{msort} l \) is a permutation of \(l \).

Proof. By strong induction on the structure of \(l \).

Base case: \([\]\). To show: \(\text{msort} [] \) sorted and \(\text{msort} [] \) is a permutation of \([] \).

Proof: \(\text{msort} [] \cong [] \) by clause 1 of \(\text{msort} \).
Base case: $[x]$. To show: $\text{msort } x :: []$ sorted and $\text{msort } x :: []$ is a permutation of $x :: []$.

Proof: $\text{msort } x :: [] \cong x :: []$ by clause 2 of msort.

Inductive step: l. IH: For all sublists l' of l, $\text{msort } l' \text{ sorted}$ and $\text{msort } l'$ is a permutation of l'.

To show: $\text{msort } l \text{ sorted}$ and $\text{msort } l$ is a permutation of l.

Proof: $\text{msort } l \cong \text{let val (A, B) = split } l \text{ in } \text{merge}(\text{msort } A, \text{msort } B) \text{ end}$ by the third clause of msort. By the lemma shown in the other set of notes, $\text{split } l \implies (a, b)$ and $a@b$ is a permutation of l (so a and b are sublists of l).

By another step, $\text{msort } l \cong \text{merge } (\text{msort } a, \text{msort } b)$. By two applications of IH, this is equivalent to $\text{merge } (a', b')$ where $a' \text{ sorted}$, $b' \text{ sorted}$ and a' and b' are permutations of a and b respectively. By Lemma 1, this is equivalent to l', where $l' \text{ sorted}$ and l' is a permutation of $a'@b'$, which is a permutation of $a@b$, which is a permutation of l.