Asymptotic Cost Analysis

• Big-O complexity classes
• Recurrence Relations
• Work and Span
• Application: Sorting
Big-O Complexity Classes

Suppose $f(n)$ and $g(n)$ are positive-valued mathematical functions (with n a natural number).

We say that “$f(n)$ is $O(g(n))$” if there exist N and c such that

$$f(n) \leq c \cdot g(n) \text{ for all } n \geq N.$$
Big-O Complexity Classes

Suppose $f(n)$ and $g(n)$ are positive-valued mathematical functions (with n a natural number).

We say that “$f(n)$ is $O(g(n))$” if there exist N and c such that

$$f(n) \leq c \cdot g(n) \quad \text{for all} \quad n \geq N.$$

$n^2 + n + 3$ is $O(n^2)$ for instance.

(Use $N=3$ and $c=2$)

(e.g., $7^2 + 7 + 3 \leq 2 \cdot 7^2$)
Big-O Complexity Classes

Suppose $f(n)$ and $g(n)$ are positive-valued mathematical functions (with n a natural number).

We will let f measure work or span in terms of some size parameter n (sometimes tree depth d) and obtain complexity classes

\[O(1), O(n), O(n^2), O(n^3), \ldots, \]
\[O(\log n), O(n \cdot \log n), O(2^n), \ldots \]
Analyzing `append` and `rev`

(* @ : int list * int list -> int list *)

fun [] @ Y = Y
| (x::xs) @ Y = x::(xs @ Y)

(* rev : int list -> int list
 REQUIRES: true
 ENSURES: rev(L) consists of L’s elements in reverse order.
 *)

fun rev [] = []
| rev (x::xs) = (rev xs) @ [x]
Code for \texttt{append}:

\begin{verbatim}
fun [] @ Y = Y
 | (x::xs) @ Y = x::(xs @ Y)
\end{verbatim}

Work analysis of \texttt{append}:

\begin{equation}
W_@ (n,m) \text{ with } n \text{ and } m \text{ the sizes of the input lists.}
\end{equation}

Equation for base case:

\begin{equation}
W_@ (0,m) = c_0, \text{ for some } c_0, \text{ all } m.
\end{equation}

Equation for recursive clause, for \(n > 0 \):

\begin{equation}
W_@ (n,m) = c_1 + W_@ (n-1,m), \text{ for some } c_1, \text{ all } m.
\end{equation}
Solving: \(W_{@}(0,m) = c_0 \)

\[
W_{@}(n,m) = c_1 + W_{@}(n-1,m)
\]

Unrolling:

\[
W_{@}(n,m) = c_1 + c_1 + W_{@}(n-2,m)
\]
Solving: \(W_{@}(0,m) = c_0 \)
\[W_{@}(n,m) = c_1 + W_{@}(n-1,m) \]

Unrolling:
\[W_{@}(n,m) = c_1 + c_1 + W_{@}(n-2,m) \]
\[= c_1 + c_1 + c_1 + W_{@}(n-3,m) \]
Solving: \(W_@ (0,m) = c_0 \)
\[
W_@ (n,m) = c_1 + W_@ (n-1,m)
\]

Unrolling:
\[
W_@ (n,m) = c_1 + c_1 + W_@ (n-2,m)
= c_1 + c_1 + c_1 + W_@ (n-3,m)
\]
\[
\ldots = n \cdot c_1 + c_0 \quad \text{(can prove this by induction)}
\]

So evaluation of \((X @ Y)\) has \(O(n)\) work, with \(n\) the length of \(X\).
Code for \texttt{rev}:

\begin{verbatim}
 fun rev [] = []
 | rev (x::xs) = (rev xs) @ [x]
\end{verbatim}

Work analysis of \texttt{rev}:

\(W_{\text{rev}}(n) \) with \(n \) the size of the input list.

Equation for base case:

\(W_{\text{rev}}(0) = c_0 \), for some \(c_0 \).

Equation for recursive clause, for \(n > 0 \):

\(W_{\text{rev}}(n) = c_1 + W_{\text{rev}}(n-1) + W_{\text{@}}(n-1,1) \), some \(c_1 \).

Why?
Code for \texttt{rev}:

\begin{verbatim}
fun rev [] = []
 | rev (x::xs) = (rev xs) @ [x]
\end{verbatim}

Work analysis of \texttt{rev}:

\(W_{\text{rev}}(n)\) with \(n\) the size of the input list.

Equation for base case:

\(W_{\text{rev}}(0) = c_0\), for some \(c_0\).

Equation for recursive clause, for \(n > 0\):

\(W_{\text{rev}}(n) = c_1 + W_{\text{rev}}(n-1) + W_{\@}(n-1,1)\), some \(c_1\).

So:

\(W_{\text{rev}}(n) \leq c_1 + W_{\text{rev}}(n-1) + c_2(n-1)\), some \(c_2\).
Solving: \(W_{\text{rev}}(0) = c_0 \)

\[W_{\text{rev}}(n) \leq c_1 + W_{\text{rev}}(n-1) + c_2(n-1) \]

Unrolling:

\[W_{\text{rev}}(n) \leq c_1 + c_2 \cdot n + W_{\text{rev}}(n-1) \]

\[W_{\text{rev}}(n) \leq c_1 + c_2 \cdot n + \{ c_1 + c_2(n-1) + W_{\text{rev}}(n-2) \} \]
Solving:

\[w_{\text{rev}}(0) = c_0 \]
\[w_{\text{rev}}(n) \leq c_1 + w_{\text{rev}}(n-1) + c_2(n-1) \]

Unrolling:

\[w_{\text{rev}}(n) \leq c_1 + c_2 \cdot n + w_{\text{rev}}(n-1) \]
\[w_{\text{rev}}(n) \leq c_1 + c_2 \cdot n + \{c_1 + c_2(n-1) + w_{\text{rev}}(n-2)\} \]
\[\leq c_1 + c_2 \cdot n + c_1 + c_2(n-1) \]
\[+ \{c_1 + c_2(n-2) + w_{\text{rev}}(n-3)\} \]
Solving: \[W_{\text{rev}}(0) = c_0 \]
\[W_{\text{rev}}(n) \leq c_1 + W_{\text{rev}}(n-1) + c_2(n-1) \]

Unrolling:
\[W_{\text{rev}}(n) \leq c_1 + c_2 \cdot n + W_{\text{rev}}(n-1) \]

\[W_{\text{rev}}(n) \leq c_1 + c_2 \cdot n + \{c_1 + c_2(n-1) + W_{\text{rev}}(n-2)\} \]

\[\leq c_1 + c_2 \cdot n + c_1 + c_2(n-1) \]

\[+ \{c_1 + c_2(n-2) + W_{\text{rev}}(n-3)\} \]

\[\ldots \leq c_0 + n \cdot c_1 + \frac{n(n+1)}{2} \cdot c_2 \]
Solving: \(w_{rev}(0) = c_0 \)
\[
 w_{rev}(n) \leq c_1 + w_{rev}(n-1) + c_2(n-1)
\]

Unrolling:
\[
 w_{rev}(n) \leq c_1 + c_2 \cdot n + w_{rev}(n-1)
\]

\[
 w_{rev}(n) \leq \ldots
\]
\[
 \leq c_0 + n \cdot c_1 + \left(\frac{n(n+1)}{2} \right) \cdot c_2
\]

So evaluation of \(\text{rev}(L) \) has \(O(n^2) \) work, with \(n \) the length of \(L \).
Analyzing `trev`

(* `trev : int list * int list -> int list *` *)

fun `trev` ([], acc) = acc
 | `trev` (x::xs, acc) = `trev`(xs, x::acc)
Code for `trev`:

```haskell
  fun trev ([], acc) = acc
  | trev (x::xs, acc) = trev(xs, x::acc)
```

Work analysis of `trev`:

\[W_{trev}(n,m) \] with \(n \) and \(m \) the sizes of the input lists.

Equation for base case:

\[W_{trev}(0,m) = c_0, \text{ for some } c_0, \text{ all } m. \]

Equation for recursive clause, for \(n > 0 \):

\[W_{trev}(n,m) = c_1 + W_{trev}(n-1,m+1), \text{ some } c_1, \text{ all } m. \]

Unrolling:

\[W_{trev}(n,m) = c_1 + c_1 + W_{trev}(n-2,m+2) \]
\[\ldots = n \cdot c_1 + c_0, \text{ which is } O(n). \]
Analyzing tree summation

datatype tree = Empty
 | Node of tree * int * tree

(* sum : tree -> int *)
 REQUIRES: true
 ENSURES: sum(T) adds all integers in T.
*)

fun sum (Empty : tree) : int = 0
 | sum (Node(l,x,r)) = (sum l) + x + (sum r)
Code for sum:

```ml
fun sum Empty = 0
| sum (Node(l, x, r)) = (sum l) + x + (sum r)
```

Work analysis of sum:

\[W_{\text{sum}}(n) \] with \(n \) the number of nodes in the tree.

Equation for base case:

\[W_{\text{sum}}(0) = c_0, \text{ for some } c_0. \]

Equation for recursive clause, for \(n > 0 \):

\[W_{\text{sum}}(n) = c_1 + W_{\text{sum}}(n_l) + W_{\text{sum}}(n_r), \text{ some } c_1, \]

with \(n_l \) the number of nodes in the left subtree and \(n_r \) the number of nodes in the right subtree.
Solving:

\[\text{W}^\text{sum}(0) = c_0 \]
\[\text{W}^\text{sum}(n) = c_1 + \text{W}^\text{sum}(n_\ell) + \text{W}^\text{sum}(n_r) \]

Tree Method: (write down work that occurs at each node/leaf)

![Tree Diagram]

\[\text{W}^\text{sum}(n) = c_1n + c_0(n+1) \]

Fact: A binary tree has \(n \) nodes iff it has \(n+1 \) leaves.

So evaluation of \(\text{sum}(T) \) has \(O(n) \) work.

(can also prove this by induction)
Code for **sum**:

```ml
fun sum Empty = 0
  | sum (Node(l, x, r)) = (sum l) + x + (sum r)
```

Is there any opportunity for parallelism?

YES: The recursive calls to **sum** can occur in parallel.
Code for `sum`:

```haskell
fun sum Empty = 0
  | sum (Node(l,x,r)) = (sum l) + x + (sum r)
```

Span analysis of `sum`:

\[S_{\text{sum}}(n) \] with \(n \) the number of nodes in the tree.

Equation for base case:

\[S_{\text{sum}}(0) = c_0, \text{ for some } c_0. \]

Equation for recursive clause, for \(n > 0 \):

\[S_{\text{sum}}(n) = c_1 + \max\{S_{\text{sum}}(n_l),S_{\text{sum}}(n_r)\}, \text{ some } c_1. \]

Notice how `max` replaces `+` in the cost analysis.
Solving: \(s_{\text{sum}}(0) = c_0 \)
\[
s_{\text{sum}}(n) = c_1 + \max\{s_{\text{sum}}(n_l), s_{\text{sum}}(n_r)\}
\]

ALAS! It could be that \(n_l = n - 1 \) and \(n_r = 0 \).

Then the recursive equation becomes:
\[
s_{\text{sum}}(n) = c_1 + s_{\text{sum}}(n-1)
\]

Therefore \(s_{\text{sum}}(n) \) is \(O(n) \), meaning we haven’t gained anything from parallel evaluation.
Suppose however that the tree is \textit{balanced}.

(This means that roughly half the remaining nodes appear in each subtree as one descends the tree.)

Then: \[S_{\text{sum}}(0) = c_0 \]
\[S_{\text{sum}}(n) \approx c_1 + \max\{S_{\text{sum}}(n/2), S_{\text{sum}}(n/2)\} \]
Suppose however that the tree is balanced.

(This means that roughly half the remaining nodes appear in each subtree as one descends the tree.)

Then:

\[
S_{\text{sum}}(0) = c_0 \\
S_{\text{sum}}(n) = c_1 + \max\{S_{\text{sum}}(n/2), S_{\text{sum}}(n/2)\}
\]

So

\[
S_{\text{sum}}(n) = c_1 + S_{\text{sum}}(n/2) \\
= c_1 + c_1 + S_{\text{sum}}(n/4) \\
\ldots \\
= c_1 + c_1 + \ldots + c_1 + c_0 \\
\text{(⌈log}_2n\text{⌉ + 1) many times}
\]

Now \(S_{\text{sum}}(n) \) is \(O(\log(n)) \), meaning parallelism is significant.
We could also have obtained this result by expressing span as \(S_{\text{sum}}(d) \), with \(d \) the depth (i.e., height) of the tree.

Then:

\[
S_{\text{sum}}(0) = c_0
\]

\[
S_{\text{sum}}(d) = c_1 + \max\{S_{\text{sum}}(d-1), S_{\text{sum}}(d')\}
\]

So

\[
S_{\text{sum}}(d) = c_1 + S_{\text{sum}}(d-1)
\]

Thus \(S_{\text{sum}}(d) \) is \(O(d) \).

This result holds for all trees. \((d=n \text{ is possible})\)

For balanced trees, \(d \) is \(O(\log(n)) \), and we again see that parallelism helps.
Sorting

datatype order = LESS | EQUAL | GREATER

Int.compare : int * int -> order
String.compare : string * string -> order

More generally, for some type t may have

cmpare : t * t -> order
Sorting

\[
\text{datatype order} = \text{LESS} \mid \text{EQUAL} \mid \text{GREATER}
\]

For lists: \[
[\ldots, x, \ldots\text{LESS}|\text{EQUAL}\ldots, y, \ldots]
\]

L is sorted iff \(\text{compare}(x, y) \Rightarrow \text{LESS} \) or \(\text{EQUAL}\)
whenever \(x\) appears to the left of \(y\) in \(L\).
Sorting

data type order = LESS | EQUAL | GREATER

For lists:

\[L \text{ is } \text{sorted} \text{ iff } \text{compare}(x,y) \implies \text{LESS or EQUAL} \text{ whenever } x \text{ appears to the left of } y \text{ in } L. \]

For trees:

Empty is sorted,

Node\((t_1, y, t_2)\) is sorted iff

\[t_1 \text{ is sorted } \land \text{compare}(x,y) \text{ is LESS|EQUAL for all } x \text{ in } t_1, \]

\[t_2 \text{ is sorted } \land \text{compare}(z,y) \text{ is GREATER|EQUAL for all } z \text{ in } t_2. \]
insertion sort for lists

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x,L) is a sorted permutation of x::L *)

fun ins (x, []) = [x]
 | ins (x, y::ys) = case compare(x, y) of
 GREATER => y::ins(x, ys)
 _ => x::y::ys

(Remember our definition of a sorted list:

\[
[\ldots, x, \ldots \text{LESS|EQUAL}, y, \ldots]\n\)
insertion sort for lists

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x,L) is a sorted permutation of x::L
*)

fun ins (x, []) = [x]
 | ins (x, y::ys) = case compare(x, y) of
 GREATER => y::ins(x, ys)
 | _ => x::y::ys

(* isort : int list -> int list
 REQUIRES: true
 ENSURES: isort(L) is a sorted permutation of L
*)

fun isort [] = []
 | isort (x::xs) = ins (x, isort xs)
Code for \texttt{ins}:

\begin{verbatim}
 fun ins (x, []) = [x]
 | ins (x, y::ys) = case compare(x, y) of
 GREATER => y::ins(x, ys)
 | _ => x::y::ys
\end{verbatim}

Work:

\(W_{\text{ins}}(n) \) with \(n \) the list length.

Equations:

\begin{align*}
 W_{\text{ins}}(0) &= c_0 \\
 W_{\text{ins}}(n) &= c_1 + W_{\text{ins}}(n-1), \text{ for first case clause} \\
 W_{\text{ins}}(n) &= c_2, \text{ for second case clause}
\end{align*}

Consequently, \(W_{\text{ins}}(n) \) is \(O(n) \).

Also, observe: no opportunity for parallel speedup.
Code for `isort`:

```haskell
fun isort [] = []
    | isort (x::xs) = ins (x, isort xs)
```

Work:

$W_{isort}(n)$ with n the list length.

Equations:

\[
W_{isort}(0) = c_0
\]

\[
W_{isort}(n) = c_1 + W_{isort}(n-1) + W_{ins}(n-1)
\]

So:

\[
W_{isort}(n) \leq c_1 + c_2 \cdot n + W_{isort}(n-1)
\]

(that should remind you of the recurrence for `rev`)

Consequently, $W_{isort}(n)$ is $O(n^2)$.

Again, no opportunity for parallel speedup.
Inserting into a sorted tree

(* Ins : int * tree -> tree
 REQUIRES: T is sorted
 ENSURES: Ins(x,T) is sorted and contains exactly
 x and all the elements of T. *)

fun Ins (x, Empty) = Node(Empty, x, Empty)
| Ins (x, Node(l,y,r)) =
 case compare(x, y) of
 LESS => Node(Ins(x, l), y, r)
 | _ => Node(l, y, Ins(x, r))

(Recall our definition of a sorted tree: \(x \leq y \leq z \))
Code for \texttt{Ins}:

\begin{verbatim}
 fun Ins (x, Empty) = Node(Empty, x, Empty)
 | Ins (x, Node(l,y,r)) =
 case compare(x, y) of
 LESS => Node(Ins(x, l), y, r)
 | _ => Node(l, y, Ins(x, r))
\end{verbatim}

\textbf{Work:}

\(W_{\text{Ins}}(d) \) with \(d \) the tree depth.

\textbf{Equations:}

\begin{align*}
 W_{\text{Ins}}(0) &= c_0 \\
 W_{\text{Ins}}(d) &= c_1 + W_{\text{Ins}}(d-1) \text{ in worst case}
\end{align*}

Consequently, \(W_{\text{Ins}}(d) \) is \(O(d) \), as is \(S_{\text{Ins}}(d) \).

For balanced trees this gives \(O(\log(n)) \) insertion.
Sorting

<table>
<thead>
<tr>
<th>Work</th>
<th>list isort</th>
<th>list merge sort</th>
<th>tree merge sort</th>
</tr>
</thead>
<tbody>
<tr>
<td>O((n^2))</td>
<td>O((n \cdot \log n))</td>
<td>O((n \cdot \log n))</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Span</th>
<th>list isort</th>
<th>list merge sort</th>
<th>tree merge sort</th>
</tr>
</thead>
<tbody>
<tr>
<td>O((n^2))</td>
<td>O(n)</td>
<td>O(((\log n)^3))</td>
<td>O(((\log n)^2))</td>
</tr>
</tbody>
</table>

(next time) (online & 210)