This note proves an extensional equivalence for list reversal as discussed in lecture.

SUGGESTION: Read the first page of this note, then try to prove the Theorem. Then look at the second page for a solution. That is a good way to prepare yourself for homework and midterm.

Here is the relevant code:

```ocaml
(* rev : int list -> int list
     REQUIRES: true
     ENSURES: rev(L) evaluates to the list L in reverse order.
     *)

fun rev ([] : int list) : int list = []
| rev (x::xs) = (rev xs) @ [x]

(* trev : int list * int list -> int list
    REQUIRES: true
    ENSURES: trev(L, acc) \equiv (rev L) @ acc
    *)

fun trev([], acc : int list) : int list = acc
| trev(x::xs, acc) = trev(xs, x::acc)

(* reverse : int list -> int list
     REQUIRES: true
     ENSURES: reverse(L) evaluates to the list L in reverse order.
     *)

fun reverse(L : int list) : int list = trev(L, [])
```

Theorem: For all values \(L \) and \(acc \) of type \(int list \), \(trev(L, acc) \equiv (rev L) @ acc \).

In order to prove the theorem, we will use two lemmas, stated next. The first lemma says that @ is an associative operator. The second lemma says that appending a list consisting of one element onto a second list reduces to the process of consing that one element onto the second list.

Lemma 1: For all expressions \(e_1, e_2, e_3 \) of type \(int list \), \(e_1 @ (e_2 @ e_3) \equiv (e_1 @ e_2) @ e_3 \).

Lemma 1 is proved in the structural induction notes accompanying this lecture.

Lemma 2: For all values \(x : int \) and \(acc : int list \), \([x] @ acc \implies x::acc \).

Exercise: Prove Lemma 2 from the code for @ given here:

```ocaml
fun @ ([] : int list, R : int list) : int list = R
| @ (x::xs, R) = x :: @(xs, R)
infixed @
```
Proof: By structural induction on \(L \).

BASE CASE: \(L = [\] \).

NEED TO SHOW: \(trev([\], acc) \equiv rev([\]) @ acc \) for all values \(acc : \text{int list} \).

SHOWING: Let us evaluate the left and right sides of this “NEED TO SHOW” separately:

\[
\begin{align*}
\text{trev([\], acc)} & \implies \text{acc} & \text{[first clause of trev]} \\
\text{rev([\]) @ acc} & \implies [\] @ acc & \text{[first clause of rev]} \\
& \implies \text{acc} & \text{[first clause of @]}
\end{align*}
\]

Since both expressions reduce to the same value, they are extensionally equivalent. That establishes the base case.

INDUCTION STEP: \(L = x::xs \), for some values \(x : \text{int} \) and \(xs : \text{int list} \).

INDUCTION HYPOTHESIS:
For all values \(acc' : \text{int list} \), \(trev(xs, acc') \equiv rev(xs) @ acc' \).

(We wrote \(acc' \) rather than \(acc \) merely to distinguish it from the \(acc \) used below. We emphasize that the quantification in the IH is for all accumulator arguments.)

NEED TO SHOW: For all values \(acc : \text{int list} \), \(trev(x::xs, acc) \equiv rev(x::xs) @ acc \).

SHOWING: We could again evaluate the left and right sides of the “NEED TO SHOW” separately. However, to illustrate a different proof approach, we will use explicit equivalences at each step:

\[
\begin{align*}
\text{trev(x::xs, acc)} & \equiv \text{trev(xs, x::acc)} & \text{[second clause of trev]} \\
& \equiv \text{rev(xs) @ (x::acc)} & \text{[IH, with value \(acc' = x::acc \)]} \\
& \equiv \text{rev(xs) @ ([x] @ acc)} & \text{[Lemma 2]} \\
& \equiv \text{(rev(xs) @ [x]) @ acc} & \text{[Lemma 1]} \\
& \equiv \text{rev(x::xs) @ acc} & \text{[second clause of rev]}
\end{align*}
\]

That establishes the induction step.

The base case and the induction step together establish the Theorem, by a principle of structural induction for \(\text{int list} \).

Thought Questions:
- Lemma 2 says \([x] @ acc \implies x::acc \), but above we use \(x::acc \equiv [x] @ acc \).
 Why is that valid?
- Why is the last step above, which cites the second clause of \(rev \), a valid equivalence?