Recursion and Induction

15-150

Lecture 3: September 2, 2025

Stephanie Balzer Carnegie Mellon University

Functional programming

- evaluation of expressions (no mutation!)
- facilitates specification and reasoning about program
 - correctness proof (today's topic!)
- facilitates parallelism

Types, expressions, values

- types as specifications
- observation: once your program type checks, it works!

we'll revisit exact definition

Extensional equivalence (≅)

"Two things are equal if the behave the same"

facilitates compositional (aka modular) reasoning

replace equals by equals in any sub-expression

Declarations, binding and scope

shadowing of bindings

function declarations bind a closure to the function identifier

closure comprises lambda expression and environment with bindings existing at declaration time

Pattern matching

patterns are used at binding sites of values

eg, val bindings, function arguments, case expression

allow us to match against an expected value

allow us to decompose a value in its constituent parts, introducing appropriate bindings for parts

5-step methodology of function declaration

- 1 function name and type
- 2 REQUIRES: precondition
- 3 ENSURES: postcondition
- 4 function body
- 5 tests

Today, we add a 6th step:

6 correctness proof

Today's topic: functional correctness

Let's prove our programs correct, one function at a time!

we will use three kinds of induction:

mathematical induction

strong induction

structural induction

we consider how expressions are evaluated

we may appeal to mathematical properties and assume that SML implements them correctly

```
(* power : (int * int) -> int
    REQUIRES: k >= 0
    ENSURES: power(n,k) ==> n^k, with 0^0 = 1.
*)
```

```
(* power : (int * int) -> int
   REQUIRES: k >= 0
   ENSURES: power(n,k) ==> n^k, with 0^0 = 1.
*)

fun power
[_:int, 0:int) : int = 1
   | power
   (n:int, k:int) : int = n * power(n, k-1)

   pattern matching
```

```
(* power : (int * int) -> int
    REQUIRES: k >= 0
    ENSURES: power(n,k) ==> n^k, with 0^0 = 1.
*)

fun power (_:int, 0:int) : int = 1
    | power (n:int, k:int) : int = n * power(n, k-1)
```


this function is not very efficient:

eg,
$$3^7 = 3 * 3 * 3 * 3 * 3 * 3 * 3$$

Number of recursive calls: O(k)

Can we do better than that?

Idea for making power more efficient

this function is not very efficient:

eg,
$$3^7 = 3 * 3 * 3 * 3 * 3 * 3 * 3$$

- **→**
- Number of recursive calls: O(k)
- **→**

Can we do better than that?

Assume we have functions **even** and **square**. Now we can get a more efficient implementation:

eg,
$$3^7 = 3 * (3 * 3) 2$$

= $3 * (3 * (3 * 1) 2) 2$
= $3 * (3 * (3 * 1) 2) 2$


```
(* even : int -> bool
   REQUIRES: true
   ENSURES: even(k) evaluates to true if k is even
                    evaluates to false if k is odd.
*)
fun even (k:int) : bool = ((k mod 2) = 0)
(* square : int -> int
   REQUIRES: true
   ENSURES: square(n) ==> n^2
*)
```

```
(* even : int -> bool
   REQUIRES: true
   ENSURES: even(k) evaluates to true if k is even
                    evaluates to false if k is odd.
*)
fun even (k:int) : bool = ((k mod 2) = 0)
(* square : int -> int
   REQUIRES: true
   ENSURES: square(n) ==> n^2
*)
fun square (n:int) : int = n * n
```

```
(* powere : (int * int) -> int
REQUIRES: k >= 0
ENSURES: powere(n,k) ==> n^k, with 0^0 = 1.

powere computes n^k using O(log(k)) multiplies.
*)
```

```
(* powere : (int * int) -> int
   REQUIRES: k >= 0
   ENSURES: powere(n,k) ==> n^k, with 0^0 = 1.

powere computes n^k using O(log(k)) multiplies.
*)

fun powere (_:int, 0:int) : int =
   | powere (n:int, k:int) : int =
```

```
(* powere : (int * int) -> int
   REQUIRES: k >= 0
   ENSURES: powere(n,k) ==> n^k, with 0^0 = 1.

  powere computes n^k using O(log(k)) multiplies.
*)

fun powere (_:int, 0:int) : int = 1
  | powere (n:int, k:int) : int =
```

```
(* powere : (int * int) -> int
   REQUIRES: k >= 0
   ENSURES: powere(n,k) ==> n^k, with 0^0 = 1.
   powere computes n^k using O(log(k)) multiplies.
*)
fun powere (\underline{:}int, 0:int) : int = 1
    powere (n:int, k:int) : int =
      lif even(k)
      then square(powere(n, k div 2))
```

exponent k is even

```
(* powere : (int * int) -> int
   REQUIRES: k >= 0
   ENSURES: powere(n,k) ==> n^k, with 0^0 = 1.
   powere computes n^k using O(log(k)) multiplies.
*)
fun powere (\underline{:}int, 0:int) : int = 1
    powere (n:int, k:int) : int =
      if even(k)
      then square(powere(n, k div 2))
      else n * powere(n, k-1)
```



```
(* power : (int * int) -> int
    REQUIRES: k >= 0
    ENSURES: power(n,k) ==> n^k, with 0^0 = 1.
*)

fun power (_:int, 0:int) : int = 1
    | power (n:int, k:int) : int = n * power(n, k-1)
```

- **→**
 - How shall we proceed?
- -

Let's use mathematical induction!

Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n:

show that P(0) holds

base case

• then, show that for all $k \ge 0$, P(k+1) follows logically from P(k).

Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n:

- show that P(0) holds
- then, show that for all $k \ge 0$, P(k+1) follows logically from P(k).

Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n:

- show that P(0) holds
- then, show that for all $k \ge 0$, P(k+1) follows logically from P(k).

Why does it work?

- P(0) is proved directly.
- P(1) follows from P(0).
- P(2) follows from P(1).
- etc...

```
fun power (_:int, 0:int) : int = 1
  | power (n:int, k:int) : int = n * power(n, k-1)
```

Theorem: power(n, k) evaluates to n^k , for all integer values $k \ge 0$ and all integer values n.

Proof by mathematical induction on ???

```
fun power (_:int, 0:int) : int = 1
  | power (n:int, k:int) : int = n * power(n, k-1)
```

Theorem: power(n, k) evaluates to n^k , for all integer values $k \ge 0$ and all integer values n.

Proof by mathematical induction on k.

k is the integer that gets smaller!

needed for applying IH!

```
fun power (_:int, 0:int) : int = 1
  | power (n:int, k:int) : int = n * power(n, k-1)
```

Theorem: power(n, k) evaluates to n^k , for all integer values $k \ge 0$ and all integer values n.

- Proof by mathematical induction on k.
- Let's do the proof together!

```
fun power (_:int, 0:int) : int = 1
    power (n:int, k:int) : int = n * power(n, k-1)
Theorem: power(n, k) evaluates to n^k, for all integer values k \ge 1
0 and all integer values n.
Proof: By mathematical induction on k.
Base case: k = 0.
<u>Need to show</u>: power (n, 0) evaluates to n^0, for all n. Note: n^0 = 1.
Showing:
    power(n,0)
```

(step, 1st clause of power)

```
fun power (_:int, 0:int) : int = 1
     power (n:int, k:int) : int = n * power(n, k-1)
Inductive case: Step from k to k+1, with k \ge 0.
<u>IH</u>: power(n,k) evaluates to n^k, for k \ge 0 and all integers n.
Need to show: power(n,k+1) evaluates to n^{k+1}.
Showing:
     power(n,k+1)
\Rightarrow n * power(n,k+1-1)
                                              (step, 2nd clause of power)
\Rightarrow n * power(n,k)
                                              (math)
\implies n * n<sup>k</sup>
                                              (IH)
\implies n · n<sup>k</sup>
                                              (evaluation rule for *)
 \Rightarrow n<sup>k+1</sup>
                                              (math)
```

```
fun powere (_:int, 0:int) : int = 1
  | powere (n:int, k:int) : int =
     if even(k)
     then square(powere(n, k div 2))
     else n * powere(n, k-1)
```

Theorem: power(n, k) evaluates to n^k , for all integer values $k \ge 0$ and all integer values n.

Proof by ???

Note: k does no longer decrease by one!

```
fun powere (_:int, 0:int) : int = 1
  | powere (n:int, k:int) : int =
      if even(k)
      then square(powere(n, k div 2))
      else n * powere(n, k-1)
```

Theorem: power(n, k) evaluates to n^k , for all integer values $k \ge 0$ and all integer values n.

Proof by strong induction on k.

Strong induction

To prove a property P(n) for every natural number n:

show that P(0) holds

- base case
- then, show that for all k > 0,
 P(k) follows logically from {P(0), ..., P(k-1)}.

Strong induction

To prove a property P(n) for every natural number n:

- show that P(0) holds
- then, show that for all k > 0,
 P(k) follows logically from {P(0), ..., P(k-1)}.

Strong induction

To prove a property P(n) for every natural number n:

- show that P(0) holds
- then, show that for all k > 0,
 P(k) follows logically from {P(0), ..., P(k-1)}.
- Note: allowed to appeal to IH for any k' < k!
- For mathematical induction, IH can only be appealed to for the immediate predecessor!

```
fun powere (_:int, 0:int) : int = 1
    powere (n:int, k:int) : int = 1
    if even(k)
        then square(powere(n, k div 2))
        else n * powere(n, k-1)
```

Theorem: power(n, k) evaluates to n^k , for all integer values $k \ge 0$ and all integer values n.

- Proof by strong induction on k.
- Notice, the code tells us what induction principle to use!
- Let's do the proof together!

```
fun powere (_:int, 0:int) : int = 1
  | powere (n:int, k:int) : int =
     if even(k)
     then square(powere(n, k div 2))
     else n * powere(n, k-1)
```

Theorem: powere(n, k) evaluates to n^k , for all integer values $k \ge 0$ and all integer values n.

Proof: By strong induction on k.

Base case: k = 0.

<u>Need to show</u>: powere(n,0) evaluates to n^0 , for all n. Note: $n^0 = 1$.

Showing:

```
powere(n,0)
```

 $\implies 1$

(step, 1st clause of **powere**)

```
fun powere (_:int, 0:int) : int = 1
    powere (n:int, k:int) : int =
      if even(k)
      then square(powere(n, k div 2))
      else n * powere(n, k-1)
Inductive case: k > 0.
<u>IH</u>: powere(n, k') evaluates to n^{k'}, for 0 \le k' < k and all integers n.
<u>Need to show</u>: powere(n,k) evaluates to n^k, for all integers n.
Showing:
    powere(n,k)
\implies if even(k)
                                       (step, 2nd clause of powere)
    then square(powere(n,k div 2))
    else n * powere(n,k-1)
```

Distinguish two subcases, depending on whether k is even or odd.

```
fun powere (_:int, 0:int) : int = 1
    powere (n:int, k:int) : int =
      if even(k)
      then square(powere(n, k div 2))
      else n * powere(n, k-1)
Inductive case: k > 0.
Case: k = 2k', for some k' < k, assuming correctness of even.
Showing:
    powere(n,k)
\implies square(powere(n, k div 2)) (by assumption about even)
\implies square(powere(n, k')) (since k = 2k', assuming div is correct)
\implies square(\cap^{k'})
                                 (IH)
                                 (by Lemma)
\longrightarrow (nk')2
```

Lemma: For every integer value n, square(n) evaluates to n².

```
fun powere (_:int, 0:int) : int = 1
    powere (n:int, k:int) : int =
       if even(k)
       then square(powere(n, k div 2))
       else n * powere(n, k-1)
Inductive case: k > 0.
<u>Case</u>: k = 2k', for some k' < k, assuming correctness of even.
Showing:
    powere(n,k)
\implies square(powere(n, k div 2)) (by assumption about even)
\implies square(powere(n, k')) (since k = 2k', assuming div is correct)
\implies square(\cap^{k'})
                                  (IH)
                                  (by Lemma)
\longrightarrow (nk')2
= n^{2k'} = n^k
                                  (math)
```

```
fun powere (_:int, 0:int) : int = 1
    powere (n:int, k:int) : int =
       if even(k)
       then square(powere(n, k div 2))
       else n * powere(n, k-1)
Inductive case: k > 0.
<u>Case</u>: k = 2k'+1, for some k' < k, assuming correctness of even.
Showing:
     powere(n,k)
\implies n * (powere(n, k-1)) (by assumption about even)
\rightarrow n * n<sup>k-1</sup>
                                    (IH)
                                    (math)
\rightarrow n<sup>k</sup>
```

That's all for today. See you on Thursday!