
Recursion and Induction

15-150
Lecture 3: September 2, 2025

Stephanie Balzer
Carnegie Mellon University

1

Recap of week 1

2

Functional programming

evaluation of expressions (no mutation!)

facilitates specification and reasoning about program

correctness proof (today’s topic!)

facilitates parallelism

Types, expressions, values

types as specifications

observation: once your program type checks, it works!

Recap of week 1

3

Extensional equivalence ()≅
“Two things are equal if the behave the same”

facilitates compositional (aka modular) reasoning

replace equals by equals in any sub-expression

Declarations, binding and scope

shadowing of bindings

function declarations bind a closure to the function identifier

closure comprises lambda expression and environment with
bindings existing at declaration time

we’ll revisit
exact definition

Recap of week 1

4

Pattern matching

patterns are used at binding sites of values

eg, val bindings, function arguments, case expression

allow us to match against an expected value

allow us to decompose a value in its constituent parts,
introducing appropriate bindings for parts

Recap of week 1

5

5-step methodology of function declaration

function name and type1

REQUIRES: precondition2

ENSURES: postcondition3

function body4

tests5

Today, we add a 6th step:

correctness proof6

Today’s topic: functional correctness

6

we will use three kinds of induction:

Let’s prove our programs correct, one function at a time!

mathematical induction

strong induction

structural induction

we consider how expressions are evaluated

we may appeal to mathematical properties and assume that SML
implements them correctly

An example: compute nk

(* power : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: power(n,k) ==> n^k, with 0^0 = 1.
*)

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

7

An example: compute nk

(* power : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: power(n,k) ==> n^k, with 0^0 = 1.
*)

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

8

pattern matching

An example: compute nk

(* power : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: power(n,k) ==> n^k, with 0^0 = 1.
*)

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

9

recursive call

An example: compute nk

(* power : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: power(n,k) ==> n^k, with 0^0 = 1.
*)

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

10

this function is not very efficient:

eg, 37 = 3 * 3 * 3 * 3 * 3 * 3 * 3

Number of recursive calls: O(k)

Can we do better than that?

Idea for making power more efficient

11

this function is not very efficient:

eg, 37 = 3 * 3 * 3 * 3 * 3 * 3 * 3

Number of recursive calls: O(k)

Can we do better than that?

Assume we have functions even and square. Now we can get a
more efficient implementation:

eg, 37 = 3 * (3 3) 2
= 3 * (3 * (3 1) 2) 2
= 3 * (3 * (3 * 1) 2) 2

Number of recursive calls: O(log(k))

A more efficient version of power

(* even : int -> bool
 REQUIRES: true
 ENSURES: even(k) evaluates to true if k is even
 evaluates to false if k is odd.
*)

fun even (k:int) : bool = ((k mod 2) = 0)

(* square : int -> int
 REQUIRES: true
 ENSURES: square(n) ==> n^2
*)

fun square (n:int) : int = n * n

12

A more efficient version of power

(* even : int -> bool
 REQUIRES: true
 ENSURES: even(k) evaluates to true if k is even
 evaluates to false if k is odd.
*)

fun even (k:int) : bool = ((k mod 2) = 0)

(* square : int -> int
 REQUIRES: true
 ENSURES: square(n) ==> n^2
*)

fun square (n:int) : int = n * n

13

A more efficient version of power

(* even : int -> bool
 REQUIRES: true
 ENSURES: even(k) evaluates to true if k is even
 evaluates to false if k is odd.
*)

fun even (k:int) : bool = ((k mod 2) = 0)

(* square : int -> int
 REQUIRES: true
 ENSURES: square(n) ==> n^2
*)

fun square (n:int) : int = n * n

14

A more efficient version of power

(* even : int -> bool
 REQUIRES: true
 ENSURES: even(k) evaluates to true if k is even
 evaluates to false if k is odd.
*)

fun even (k:int) : bool = ((k mod 2) = 0)

(* square : int -> int
 REQUIRES: true
 ENSURES: square(n) ==> n^2
*)

fun square (n:int) : int = n * n

15

A more efficient version of power

(* even : int -> bool
 REQUIRES: true
 ENSURES: even(k) evaluates to true if k is even
 evaluates to false if k is odd.
*)

fun even (k:int) : bool = ((k mod 2) = 0)

(* square : int -> int
 REQUIRES: true
 ENSURES: square(n) ==> n^2
*)

fun square (n:int) : int = n * n

16

A more efficient version of power

(* powere : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: powere(n,k) ==> n^k, with 0^0 = 1.

 powere computes n^k using O(log(k)) multiplies.
*)

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

17

A more efficient version of power

(* powere : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: powere(n,k) ==> n^k, with 0^0 = 1.

 powere computes n^k using O(log(k)) multiplies.
*)

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

18

A more efficient version of power

(* powere : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: powere(n,k) ==> n^k, with 0^0 = 1.

 powere computes n^k using O(log(k)) multiplies.
*)

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

19

A more efficient version of power

(* powere : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: powere(n,k) ==> n^k, with 0^0 = 1.

 powere computes n^k using O(log(k)) multiplies.
*)

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

20

exponent k is even

A more efficient version of power

(* powere : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: powere(n,k) ==> n^k, with 0^0 = 1.

 powere computes n^k using O(log(k)) multiplies.
*)

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

21

Number of recursive calls: O(log(k))

Let’s verify our naive version of power

(* power : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: power(n,k) ==> n^k, with 0^0 = 1.
*)

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

22

How shall we proceed?

Let’s use mathematical induction!

Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n:
• show that P(0) holds
• then, show that for all k 0,

P(k+1) follows logically from P(k).
≥

23

base case

Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n:
• show that P(0) holds
• then, show that for all k 0,

P(k+1) follows logically from P(k).
≥

24

inductive step

Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n:
• show that P(0) holds
• then, show that for all k 0,

P(k+1) follows logically from P(k).
≥

25

Why does it work?

• P(0) is proved directly.

• P(1) follows from P(0).

• P(2) follows from P(1).

• etc…

Let’s verify our naive version of power

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

26

Proof by mathematical induction on ???

Theorem: power(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

Let’s verify our naive version of power

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

27

Proof by mathematical induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

k is the integer that
gets smaller!

needed for
applying IH!

Let’s verify our naive version of power

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

28

Proof by mathematical induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

Let’s do the proof together!

Let’s verify our naive version of power

29

Proof: By mathematical induction on k.
Base case: k = 0.
Need to show: power(n,0) evaluates to n0, for all n. Note: n0 = 1.
Showing:

(step, 1st clause of power)1⟹
power(n,0)

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

Theorem: power(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

Let’s verify our naive version of power

30

Inductive case: Step from k to k+1, with k 0.≥

Need to show: power(n,k+1) evaluates to nk+1.
Showing:

(step, 2nd clause of power)n * power(n,k+1-1)⟹
power(n,k+1)

IH: power(n,k) evaluates to nk, for k 0 and all integers n.≥

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

(math)n * power(n,k)⟹
(IH)n * nk⟹
(evaluation rule for *)n nk⋅⟹
(math)nk+1⟹

Let’s verify our more efficient version of
power, powere

31

Proof by ???

Theorem: power(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Note: k does no longer decrease by one!

Let’s verify our more efficient version of
power, powere

32

Proof by strong induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Strong induction

To prove a property P(n) for every natural number n:
• show that P(0) holds
• then, show that for all k > 0,

P(k) follows logically from {P(0), …, P(k-1)}.

33

base case

Strong induction

To prove a property P(n) for every natural number n:
• show that P(0) holds
• then, show that for all k > 0,

P(k) follows logically from {P(0), …, P(k-1)}.

34

inductive step

Strong induction

To prove a property P(n) for every natural number n:
• show that P(0) holds
• then, show that for all k > 0,

P(k) follows logically from {P(0), …, P(k-1)}.

35

Note: allowed to appeal to IH for any k’ < k!

For mathematical induction, IH can only be appealed to for the
immediate predecessor!

Let’s verify our more efficient version of
power, powere

36

Proof by strong induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

Notice, the code tells us what induction principle to use!

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Let’s do the proof together!

not immediate
predecessor!

Let’s verify our more efficient version of
power, powere

37

Theorem: powere(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Proof: By strong induction on k.
Base case: k = 0.
Need to show: powere(n,0) evaluates to n0, for all n. Note: n0 = 1.
Showing:

(step, 1st clause of powere)1⟹
powere(n,0)

Let’s verify our more efficient version of
power, powere

38

Inductive case: k > 0.

Need to show: powere(n,k) evaluates to nk, for all integers n.
Showing:

(step, 2nd clause of powere)if even(k)⟹
powere(n,k)

IH: powere(n,k') evaluates to nk', for 0 k' k and all integers n.≤ <

then square(powere(n,k div 2))
else n * powere(n,k-1)

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Distinguish two subcases, depending on whether k is even or odd.

Let’s verify our more efficient version of
power, powere

39

Inductive case: k > 0.
Case: k = 2k', for some k' < k, assuming correctness of even.
Showing:

(by assumption about even)square(powere(n, k div 2))⟹
powere(n,k)

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

(since k = 2k', assuming div is correct)square(powere(n, k'))⟹
(IH)square(nk')⟹
(by Lemma)(nk')2⟹

Lemma: For every integer value n, square(n) evaluates to n2.

Let’s verify our more efficient version of
power, powere

40

Inductive case: k > 0.
Case: k = 2k', for some k' < k, assuming correctness of even.
Showing:

(by assumption about even)square(powere(n, k div 2))⟹
powere(n,k)

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

(since k = 2k', assuming div is correct)square(powere(n, k'))⟹
(IH)square(nk')⟹
(by Lemma)(nk')2⟹
(math)n2k' = nk=

Let’s verify our more efficient version of
power, powere

41

Inductive case: k > 0.
Case: k = 2k'+1, for some k' < k, assuming correctness of even.
Showing:

(by assumption about even)n * (powere(n, k-1))⟹
powere(n,k)

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

(IH)n * nk-1⟹
(math)nk⟹

That's all for today. See you on Thursday!

42

