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Recap of week 1

2

Functional programming

evaluation of expressions (no mutation!)

facilitates specification and reasoning about program

correctness proof (today’s topic!)

facilitates parallelism

Types, expressions, values

types as specifications

observation: once your program type checks, it works!



Recap of week 1
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Extensional equivalence ( )≅
“Two things are equal if the behave the same”

facilitates compositional (aka modular) reasoning

replace equals by equals in any sub-expression

Declarations, binding and scope

shadowing of bindings

function declarations bind a closure to the function identifier

closure comprises lambda expression and environment with 
bindings existing at declaration time

we’ll revisit 
exact definition



Recap of week 1
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Pattern matching

patterns are used at binding sites of values

eg, val bindings, function arguments, case expression

allow us to match against an expected value

allow us to decompose a value in its constituent parts, 
introducing appropriate bindings for parts



Recap of week 1
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5-step methodology of function declaration

function name and type1

REQUIRES: precondition2

ENSURES: postcondition3

function body4

tests5

Today, we add a 6th step:

correctness proof6



Today’s topic: functional correctness
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we will use three kinds of induction:

Let’s prove our programs correct, one function at a time!

mathematical induction

strong induction

structural induction

we consider how expressions are evaluated

we may appeal to mathematical properties and assume that SML 
implements them correctly



An example: compute nk

(* power : (int * int) -> int  
   REQUIRES: k >= 0 
   ENSURES: power(n,k) ==> n^k, with 0^0 = 1. 
*) 

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)
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pattern matching
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recursive call



An example: compute nk

(* power : (int * int) -> int  
   REQUIRES: k >= 0 
   ENSURES: power(n,k) ==> n^k, with 0^0 = 1. 
*) 
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this function is not very efficient:

eg, 37 = 3 * 3 * 3 * 3 * 3 * 3 * 3

Number of recursive calls: O(k)

Can we do better than that?



Idea for making power more efficient
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this function is not very efficient:

eg, 37 = 3 * 3 * 3 * 3 * 3 * 3 * 3

Number of recursive calls: O(k)

Can we do better than that?

Assume we have functions even and square.  Now we can get a 
more efficient implementation:

eg, 37 = 3 * (3 3) 2
= 3 * (3 * (3 1) 2) 2
= 3 * (3 * (3 * 1) 2) 2

Number of recursive calls: O(log(k))



A more efficient version of power

(* even : int -> bool 
   REQUIRES: true 
   ENSURES: even(k) evaluates to true if k is even 
                    evaluates to false if k is odd. 
*) 

fun even (k:int) : bool = ((k mod 2) = 0) 

(* square : int -> int 
   REQUIRES: true 
   ENSURES: square(n) ==> n^2 
*) 

fun square (n:int) : int = n * n
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A more efficient version of power
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A more efficient version of power

(* powere : (int * int) -> int  
   REQUIRES: k >= 0 
   ENSURES: powere(n,k) ==> n^k, with 0^0 = 1. 

   powere computes n^k using O(log(k)) multiplies. 
*) 

fun powere (_:int, 0:int) : int = 1 
  | powere (n:int, k:int) : int = 
      if even(k) 
      then square(powere(n, k div 2)) 
      else n * powere(n, k-1)
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A more efficient version of power
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A more efficient version of power

(* powere : (int * int) -> int  
   REQUIRES: k >= 0 
   ENSURES: powere(n,k) ==> n^k, with 0^0 = 1. 

   powere computes n^k using O(log(k)) multiplies. 
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exponent k is even



A more efficient version of power

(* powere : (int * int) -> int  
   REQUIRES: k >= 0 
   ENSURES: powere(n,k) ==> n^k, with 0^0 = 1. 

   powere computes n^k using O(log(k)) multiplies. 
*) 

fun powere (_:int, 0:int) : int = 1 
  | powere (n:int, k:int) : int = 
      if even(k) 
      then square(powere(n, k div 2)) 
      else n * powere(n, k-1)
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Number of recursive calls: O(log(k))



Let’s verify our naive version of power

(* power : (int * int) -> int  
   REQUIRES: k >= 0 
   ENSURES: power(n,k) ==> n^k, with 0^0 = 1. 
*) 

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)
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How shall we proceed?

Let’s use mathematical induction!



Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n: 
• show that P(0) holds 
• then, show that for all k  0, 

P(k+1) follows logically from P(k).
≥
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base case
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inductive step



Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n: 
• show that P(0) holds 
• then, show that for all k  0, 

P(k+1) follows logically from P(k).
≥
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Why does it work?

• P(0) is proved directly. 

• P(1) follows from P(0). 

• P(2) follows from P(1). 

• etc…



Let’s verify our naive version of power

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)
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Proof by mathematical induction on ???

Theorem: power(n, k) evaluates to nk, for all integer values k  
0 and all integer values n.

≥



Let’s verify our naive version of power

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)
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Proof by mathematical induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k  
0 and all integer values n.

≥

k is the integer that 
gets smaller!

needed for 
applying IH!



Let’s verify our naive version of power

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)
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Proof by mathematical induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k  
0 and all integer values n.

≥

Let’s do the proof together!



Let’s verify our naive version of power

29

Proof: By mathematical induction on k.
Base case: k = 0.
Need to show: power(n,0) evaluates to n0, for all n.  Note: n0 = 1.
Showing:

(step, 1st clause of power)1⟹
power(n,0)

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)

Theorem: power(n, k) evaluates to nk, for all integer values k  
0 and all integer values n.

≥



Let’s verify our naive version of power
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Inductive case: Step from k to k+1, with k  0.≥

Need to show: power(n,k+1) evaluates to nk+1.
Showing:

(step, 2nd clause of power)n * power(n,k+1-1)⟹
power(n,k+1)

IH: power(n,k) evaluates to nk, for k  0 and all integers n.≥

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)

(math)n * power(n,k)⟹
(IH)n * nk⟹
(evaluation rule for *)n  nk⋅⟹
(math)nk+1⟹



Let’s verify our more efficient version of 
power, powere
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Proof by ???

Theorem: power(n, k) evaluates to nk, for all integer values k  
0 and all integer values n.

≥

fun powere (_:int, 0:int) : int = 1 
  | powere (n:int, k:int) : int = 
      if even(k) 
      then square(powere(n, k div 2)) 
      else n * powere(n, k-1)

Note: k does no longer decrease by one!



Let’s verify our more efficient version of 
power, powere
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Proof by strong induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k  
0 and all integer values n.

≥

fun powere (_:int, 0:int) : int = 1 
  | powere (n:int, k:int) : int = 
      if even(k) 
      then square(powere(n, k div 2)) 
      else n * powere(n, k-1)



Strong induction

To prove a property P(n) for every natural number n: 
• show that P(0) holds 
• then, show that for all k > 0, 

P(k) follows logically from {P(0), …, P(k-1)}.
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base case



Strong induction

To prove a property P(n) for every natural number n: 
• show that P(0) holds 
• then, show that for all k > 0, 

P(k) follows logically from {P(0), …, P(k-1)}.
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inductive step



Strong induction

To prove a property P(n) for every natural number n: 
• show that P(0) holds 
• then, show that for all k > 0, 

P(k) follows logically from {P(0), …, P(k-1)}.
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Note: allowed to appeal to IH for any k’ < k!

For mathematical induction, IH can only be appealed to for the 
immediate predecessor!



Let’s verify our more efficient version of 
power, powere
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Proof by strong induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k  
0 and all integer values n.

≥

Notice, the code tells us what induction principle to use!

fun powere (_:int, 0:int) : int = 1 
  | powere (n:int, k:int) : int = 
      if even(k) 
      then square(powere(n, k div 2)) 
      else n * powere(n, k-1)

Let’s do the proof together!

not immediate 
predecessor!



Let’s verify our more efficient version of 
power, powere
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Theorem: powere(n, k) evaluates to nk, for all integer values k  
0 and all integer values n.

≥

fun powere (_:int, 0:int) : int = 1 
  | powere (n:int, k:int) : int = 
      if even(k) 
      then square(powere(n, k div 2)) 
      else n * powere(n, k-1)

Proof: By strong induction on k.
Base case: k = 0.
Need to show: powere(n,0) evaluates to n0, for all n.  Note: n0 = 1.
Showing:

(step, 1st clause of powere)1⟹
powere(n,0)



Let’s verify our more efficient version of 
power, powere
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Inductive case: k > 0.

Need to show: powere(n,k) evaluates to nk, for all integers n.
Showing:

(step, 2nd clause of powere)if even(k)⟹
powere(n,k)

IH: powere(n,k') evaluates to nk', for 0  k'  k and all integers n.≤ <

then square(powere(n,k div 2))
else n * powere(n,k-1)

fun powere (_:int, 0:int) : int = 1 
  | powere (n:int, k:int) : int = 
      if even(k) 
      then square(powere(n, k div 2)) 
      else n * powere(n, k-1)

Distinguish two subcases, depending  on whether k is even or odd.



Let’s verify our more efficient version of 
power, powere
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Inductive case: k > 0.
Case: k = 2k', for some k' < k, assuming correctness of even.
Showing:

(by assumption about even)square(powere(n, k div 2))⟹
powere(n,k)

fun powere (_:int, 0:int) : int = 1 
  | powere (n:int, k:int) : int = 
      if even(k) 
      then square(powere(n, k div 2)) 
      else n * powere(n, k-1)

(since k = 2k', assuming div is correct)square(powere(n, k'))⟹
(IH)square(nk')⟹
(by Lemma)(nk')2⟹

Lemma: For every integer value n, square(n) evaluates to n2.



Let’s verify our more efficient version of 
power, powere
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Inductive case: k > 0.
Case: k = 2k', for some k' < k, assuming correctness of even.
Showing:

(by assumption about even)square(powere(n, k div 2))⟹
powere(n,k)

fun powere (_:int, 0:int) : int = 1 
  | powere (n:int, k:int) : int = 
      if even(k) 
      then square(powere(n, k div 2)) 
      else n * powere(n, k-1)

(since k = 2k', assuming div is correct)square(powere(n, k'))⟹
(IH)square(nk')⟹
(by Lemma)(nk')2⟹
(math)n2k' = nk=



Let’s verify our more efficient version of 
power, powere
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Inductive case: k > 0.
Case: k = 2k'+1, for some k' < k, assuming correctness of even.
Showing:

(by assumption about even)n * (powere(n, k-1))⟹
powere(n,k)

fun powere (_:int, 0:int) : int = 1 
  | powere (n:int, k:int) : int = 
      if even(k) 
      then square(powere(n, k div 2)) 
      else n * powere(n, k-1)

(IH)n * nk-1⟹
(math)nk⟹



That's all for today.  See you on Thursday!
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