Recursion and Induction

15-150
Lecture 3: September 2, 2025

Stephanie Balzer
Carnegie Mellon University

Recap of week 1

Functional programming

-} evaluation of expressions (no mutation!)

-} facilitates specification and reasoning about program

-> correctness proof (today’s topic))

-} facilitates parallelism

Types, expressions, values

-} types as specifications

-> observation: once your program type checks, it works!

Recap of week 1

we’ll revisit

exact definition
Extensional equivalence (=)

“Two things are equal if the behave the same”

-} facilitates compositional (aka modular) reasoning

-} replace equals by equals in any sub-expression

Declarations, binding and scope

-} shadowing of bindings

-} function declarations bind a closure to the function identifier

-

closure comprises lambda expression and environment with

bindings existing at declaration time

Recap of week 1

Pattern matching

-} patterns are used at binding sites of values

-} eg, val bindings, function arguments, case expression
-} allow us to match against an expected value

-

allow us to decompose a value in its constituent parts,

iIntroducing appropriate bindings for parts

Recap of week 1

5-step methodology of function declaration

CY ctonvamoanape
o
o N
O
O

Today, we add a 6th step:

@ correctness proof

Today’s topic: functional correctness

Let’s prove our programs correct, one function at a time!

e will use three kinds of induction:

-} mathematical induction
-} strong induction

-> structural induction

-} we consider how expressions are evaluated

-

we may appeal to mathematical properties and assume that SML

Implements them correctly

An example: compute nk

(x power : (int x int) —> int

REQUIRES: k >= 0

ENSURES: power(n,k) ==> n™k, with 070 = 1.
*)

An example: compute nk

(x power : (int x int) —> int

REQUIRES: k >= 0

ENSURES: power(n,k) ==> n™k, with 070 = 1.
%)

1
n x power(n, k-1)

fun power |(_:int, @:int)|: int
| power |(n:int, k:int)|: int

pattern matching

An example: compute nk

(x power : (int x int) —> int

REQUIRES: k >= 0

ENSURES: power(n,k) ==> n™k, with 070 = 1.
%)

fun power (_:int, @:int) : int
| power (n:int, k:int) : int

n * |power(n, k-1)

recursive call

An example: compute nk

(x power : (int x int) —> int

REQUIRES: k >= 0

ENSURES: power(n,k) ==> n™k, with 070 = 1.
%)

1
n x power(n, k-1)

fun power (_:int, @:int) : int
| power (n:int, k:int) : int

-} this function is not very efficient:
eg,3'=3"3"3"37373"3
-} Number of recursive calls: O(k)

-} Can we do better than that”

10

|[dea for making power more efficient

-} this function is not very efficient:

eq,3’'=3"3"3"3*3"3"3
-} Numlber of recursive calls: O(k)

-} Can we do better than that”

Assume we have functions even and square. Now we can get a
more efficient implementation:
eg,3’'=3"(39) 2
=37(387(317)32°
=3*(37(3%1)2)2

-} Number of recursive calls: O(log(k))

A more efficient version of power

12

A more efficient version of power

(x even : int —> bool
REQUIRES: true
ENSURES: even(k) evaluates to true if k is even
evaluates to false i1f k 1s odd.
*)

13

A more efficient version of power

(x even : int —> bool
REQUIRES: true
ENSURES: even(k) evaluates to true if k is even
evaluates to false 1f k 1s odd.
*)

fun even (k:int) : bool = ((k mod 2) = 0)

14

A more efficient version of power

(x even : int —> bool
REQUIRES: true
ENSURES: even(k) evaluates to true if k is even

evaluates to false 1f k 1s odd.
*)

fun even (k:int) : bool = ((k mod 2) = 0)

(x square : int —> int
REQUIRES: true
ENSURES: square(n) ==> n”2
%)

15

A more efficient version of power

(x even : int —> bool
REQUIRES: true
ENSURES: even(k) evaluates to true if k is even

evaluates to false 1f k 1s odd.
*)

fun even (k:int) : bool = ((k mod 2) = 0)
(x square : int —> int

REQUIRES: true

ENSURES: square(n) ==> n”2
%)

fun square (n:int) : int = n % n

16

A more efficient version of power

(x powere : (int % int) —> int
REQUIRES: k >= 0
ENSURES: powere(n,k) ==> n™k, with 070 = 1.

powere computes n”k using 0(log(k)) multiplies.

17

A more efficient version of power

(x powere : (int % int) —> int
REQUIRES: k >= 0
ENSURES: powere(n,k) ==> n™k, with 070 = 1.

powere computes n”k using 0(log(k)) multiplies.
x)

fun powere (_:int, 0:int) : int
| powere (n:int, k:int) : int

18

A more efficient version of power

(x powere : (int % int) —> int
REQUIRES: k >= 0
ENSURES: powere(n,k) ==> n™k, with 070 = 1.

powere computes n”k using 0(log(k)) multiplies.
x)

fun powere (_:int, 0:int) : int
| powere (n:int, k:int) : int

19

A more efficient version of power

(x powere : (int % int) —> int
REQUIRES: k >= 0
ENSURES: powere(n,k) ==> n™k, with 070 = 1.

powere computes n”k using 0(log(k)) multiplies.
x)

fun powere (_:int, 0:int) : int
| powere (n:int, k:int) : int

if even(k)

then square(powere(n, k div 2))

exponent k Is even

20

A more efficient version of power

(x powere : (int % int) —> int
REQUIRES: k >= 0
ENSURES: powere(n,k) ==> n™k, with 070 = 1.

powere computes n”k using 0(log(k)) multiplies.
x)

fun powere (_:int, 0:int) : int
| powere (n:int, k:int) : int
if even(k)
then square(powere(n, k div 2))
else n * powere(n, k-1)

-} Number of recursive calls: O(log(k))

Let’s verify our naive version of power

(x power : (int x int) —> int

REQUIRES: k >= 0

ENSURES: power(n,k) ==> n™k, with 070 = 1.
%)

1
n x power(n,

fun power (_:int, O: 1nt) int
| power (n:int, k:int) : int

-} How shall we proceed?

-} | et’s use mathematical induction!

22

Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n:

e show that P(0) holds
e then, show that for all k > O,

P(k+1) follows logically from P(K).

Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n:
e show that P(0) holds

e then, show that for all k > O,
P(k+1) follows logically from P(K). | |
iInductive step

24

Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n:
e show that P(0) holds

e then, show that for all k > O,
P(k+1) follows logically from P(K).

-} Why does it work??

e P(0) is proved directly.
* P(1) follows from P(0).

e P(2) follows from P(1).

® ctC...

25

Let’s verify our naive version of power

1

fun power (_:int, 0:int) : int
n x power(n, k-1)

| power (n:int, k:int) : int

Theorem: power(n, k) evaluates to nk, for all integer values k >
0 and all integer values n.

-} Proof by mathematical induction on ???

26

Let’s verify our naive version of power

1

fun power (_:int, 0:int) : int
n x power(n, k-1)

| power (n:int, k:int) : int

Theorem: power(n, k) evaluates to nk, for all integer values k >
0 and all integer values n.

-} Proof by mathematical induction on k.

K is the integer that
gets smaller!

needed for
applying IH!

27

Let’s verify our naive version of power

1

fun power (_:int, 0:int) : int
n x power(n, k-1)

| power (n:int, k:int) : int

Theorem: power(n, k) evaluates to nk, for all integer values k >
0 and all integer values n.

-} Proof by mathematical induction on k.
-} Let’'s do the proof together!

28

L et’s verify our naive version of power

1
n x power(n, k-1)

fun power (_:int, 0:int) : int
| power (n:int, k:int) : int

Theorem: power(n, k) evaluates to nk, for all integer values k >
@ and all integer values n.

Proof: By mathematical induction on k.

Base case: k = 0.
Need to show: power(n, @) evaluates to no, for all n. Note: n0= 1.

Showing:
power(n, Q)
— 1 (step, 1st clause of power)

29

L et’s verify our naive version of power

1
n x power(n, k-1)

fun power (_:int, 0:int) : int
| power (n:int, k:int) : int

Inductive case: Step from k to k+1, with k > O.

IH: power(n, k) evaluates to nk, for k > 0 and all integers n.
Need to show: power(n, k+1) evaluates to nk+!.

Showing:

power(n, k+1)
—> n *x power(n,k+1-1) (step, 2nd clause of power)
— n *x power(n,Kk) math)

(
—> N * nKk (IH)

—> N - nk (evaluation rule for)
— (

nk+1 math)

30

Let’s verify our more efficient version of
DOWer, POWere

fun powere (_:int, @0:int) : int
| powere (n:int, k:int) : int
if even(k)
then square(powere(n, |k div 2))

else n *x powere(n, k-1)

i
=

Theorem: power(n, k) evaluates to nk, for all integer values k >
@ and all integer values n.

 d Proof by 227

-} Note: k does no longer decrease by one!

31

Let’s verify our more efficient version of
DOWer, POWere

fun powere (_:int, @0:int) : int
| powere (n:int, k:int) : int
if even(k)
then square(powere(n, k div 2))
else n *x powere(n, k-1)

i
=

Theorem: power(n, k) evaluates to nk, for all integer values k >
@ and all integer values n.

—} Proof by strong induction on k.

32

Strong induction
To prove a property P(n) for every natural number n:

e show that P(0) holds \.
base case
e then, show that for all k > O,

P(k) follows logically from {P(0), ..., P(k-1)}.

Strong induction

To prove a property P(n) for every natural number n:

e show t

e then, S
P(k) fol

nat P(0) holds
now that for all k > O,

ows logically from {P(0), ..., P(k-1)}.

iInductive step

34

Strong induction

To prove a property P(n) for every natural number n:

e show that P(0) holds

e then, show that for all k > O,
P(k) follows logically from {P(0), ..., P(k-1)}.

-} Note: allowed to appeal to IH for any k™ < k!

-

For mathematical induction, IH can only be appealed to for the

iImmediate predecessor!

35

Let’s verify our more efficient version of
DOWer, POWere

fun powere (_:int, Q:int) : int not immediate
| powere (n:int, k:lnt) * 1nt predecesgor!
if even(k)
then square(powere(n, |k div 2))

else n *x powere(n, k-1)

Theorem: power(n, k) evaluates to nk, for all integer values k >
@ and all integer values n.

—} Proof by strong induction on k.

-} Notice, the code tells us what induction principle to use!

-} Let’s do the proof together!

36

Let’s verify our more efficient version of
DOWEer, powere

fun powere (_:int, 0:int) : int
| powere (n:int, k:int) : int
if even(k)
then square(powere(n, k div 2))
else n *x powere(n, k-1)

i
=

Theorem: powere(n, k) evaluates to nk, for all integer values k >
@ and all integer values n.

Proof: By strong induction on k.

Base case: k = 0.
Need to show: powere(n, @) evaluates to no, for all n. Note: n0= 1.
Showing:
powere(n, Q)
= 1 (step, 1st clause of powere)

37

Let’s verify our more efficient version of
DOWEer, powere

fun powere (_:int, Q:int) : int =1
| powere (n:int, k:int) : int =
if even(k)
then square(powere(n, k div 2))
else n *x powere(n, k-1)

Inductive case: k > 0.

IH: powere(n, k') evaluates to n¥, for 0 < k' < k and all integers n.
Need to show: powere(n, k) evaluates to nk, for all integers n.

Showing:
powere(n, k)

— if even(k) (step, 2nd clause of powere)
then square(powere(n,k div 2))
else n x powere(n,k-1)

Distinguish two subcases, depending on whether k is even or odd.

38

Let’s verify our more efficient version of
DOWEer, powere

fun powere (_:int, Q:int) : int =1
| powere (n:int, k:int) : int =
if even(k)
then square(powere(n, k div 2))
else n *x powere(n, k-1)

Inductive case: k > 0.
Case: k = 2k, for some k' < k, assuming correctness of even.
Showing:
powere(n, k)
— square(powere(n, k div 2)) (by assumption about even)
—> square(powere(n, k')) (since k = 2k', assuming d1iv is correct)

— square(n) (IH)
—> (NK)? (loy Lemma)

Lemma: For every integer value n, square(n) evaluates to n2. 30

Let’s verify our more efficient version of
DOWEer, powere

fun powere (_:int, Q:int) : int =1
| powere (n:int, k:int) : int =
if even(k)
then square(powere(n, k div 2))
else n *x powere(n, k-1)

Inductive case: k > 0.
Case: k = 2k, for some k' < k, assuming correctness of even.
Showing:
powere(n, k)
— square(powere(n, k div 2)) (by assumption about even)
—> square(powere(n, k')) (since k = 2k', assuming d1iv is correct)

—> square(nk) (IH)
—> (NK)? (loy Lemma)
(math)

= N2K = NK
40

Let’s verity our more efficient version of
DOWEr, powere

fun powere (_:int, Q:int) : int =1
| powere (n:int, k:int) : int =
if even(k)
then square(powere(n, k div 2))
else n *x powere(n, k-1)

Inductive case: k > 0.
Case: k = 2k'+1, for some k' < k, assuming correctness of even.
Showing:

powere(n, k)
—> n * (powere(n, k-1)) (byassumption about even)
—> N * Nk (IH)
=—> K (math)

41

That's all for today. See you on Thursday!

