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Functional programming

evaluation of expressions (no mutation!)

facilitates specification and reasoning about program

correctness proof (today’s topic!)

facilitates parallelism

Types, expressions, values

types as specifications

observation: once your program type checks, it works!
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Extensional equivalence ( )≅
“Two things are equal if the behave the same”

facilitates compositional (aka modular) reasoning

replace equals by equals in any sub-expression

Declarations, binding and scope

shadowing of bindings

function declarations bind a closure to the function identifier

closure comprises lambda expression and environment with 
bindings existing at declaration time
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Pattern matching

patterns are used at binding sites of values

eg, val bindings, function arguments, case expression

allow us to match against an expected value

allow us to decompose a value in its constituent parts, 
introducing appropriate bindings for parts
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5-step methodology of function declaration

function name and type1

REQUIRES: precondition2

ENSURES: postcondition3

function body4

tests5

Today, we add a 6th step:

correctness proof6



Today’s topic: functional correctness

6



Today’s topic: functional correctness

6

Let’s prove our programs correct, one function at a time!



Today’s topic: functional correctness

6

we will use three kinds of induction:

Let’s prove our programs correct, one function at a time!



Today’s topic: functional correctness

6

we will use three kinds of induction:

Let’s prove our programs correct, one function at a time!

mathematical induction



Today’s topic: functional correctness

6

we will use three kinds of induction:

Let’s prove our programs correct, one function at a time!

mathematical induction

strong induction



Today’s topic: functional correctness

6

we will use three kinds of induction:

Let’s prove our programs correct, one function at a time!

mathematical induction

strong induction

structural induction



Today’s topic: functional correctness

6

we will use three kinds of induction:

Let’s prove our programs correct, one function at a time!

mathematical induction

strong induction

structural induction

we consider how expressions are evaluated



Today’s topic: functional correctness

6

we will use three kinds of induction:

Let’s prove our programs correct, one function at a time!

mathematical induction

strong induction

structural induction

we consider how expressions are evaluated

we may appeal to mathematical properties and assume that SML 
implements them correctly
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Idea for making power more efficient

11

this function is not very efficient:

eg, 37 = 3 * 3 * 3 * 3 * 3 * 3 * 3

Number of recursive calls: O(k)

Can we do better than that?

Assume we have functions even and square.  Now we can get a 
more efficient implementation:

eg, 37 = 3 * (3 3) 2
= 3 * (3 * (3 1) 2) 2
= 3 * (3 * (3 * 1) 2) 2

Number of recursive calls: O(log(k))
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Number of recursive calls: O(log(k))
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(* power : (int * int) -> int  
   REQUIRES: k >= 0 
   ENSURES: power(n,k) ==> n^k, with 0^0 = 1. 
*) 

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)

22

How shall we proceed?

Let’s use mathematical induction!
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Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n: 
• show that P(0) holds 
• then, show that for all k  0, 

P(k+1) follows logically from P(k).
≥

25

Why does it work?

• P(0) is proved directly.

• P(1) follows from P(0).

• P(2) follows from P(1).

• etc…
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Proof by mathematical induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k  
0 and all integer values n.

≥

k is the integer that 
gets smaller!

needed for 
applying IH!
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• then, show that for all k > 0, 

P(k) follows logically from {P(0), …, P(k-1)}.

35

Note: allowed to appeal to IH for any k’ < k!

For mathematical induction, IH can only be appealed to for the 
immediate predecessor!
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Lemma: For every integer value n, square(n) evaluates to n2.
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That's all for today.  See you on Thursday!
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