
Recursion and Induction

15-150
Lecture 3: September 2, 2025

Stephanie Balzer
Carnegie Mellon University

1

Recap of week 1

2

Recap of week 1

2

Functional programming

Recap of week 1

2

Functional programming

evaluation of expressions (no mutation!)

Recap of week 1

2

Functional programming

evaluation of expressions (no mutation!)

facilitates specification and reasoning about program

Recap of week 1

2

Functional programming

evaluation of expressions (no mutation!)

facilitates specification and reasoning about program

correctness proof (today’s topic!)

Recap of week 1

2

Functional programming

evaluation of expressions (no mutation!)

facilitates specification and reasoning about program

correctness proof (today’s topic!)

facilitates parallelism

Recap of week 1

2

Functional programming

evaluation of expressions (no mutation!)

facilitates specification and reasoning about program

correctness proof (today’s topic!)

facilitates parallelism

Types, expressions, values

Recap of week 1

2

Functional programming

evaluation of expressions (no mutation!)

facilitates specification and reasoning about program

correctness proof (today’s topic!)

facilitates parallelism

Types, expressions, values

types as specifications

Recap of week 1

2

Functional programming

evaluation of expressions (no mutation!)

facilitates specification and reasoning about program

correctness proof (today’s topic!)

facilitates parallelism

Types, expressions, values

types as specifications

observation: once your program type checks, it works!

Recap of week 1

3

Extensional equivalence ()≅

Recap of week 1

3

Extensional equivalence ()≅
“Two things are equal if the behave the same”

Recap of week 1

3

Extensional equivalence ()≅
“Two things are equal if the behave the same”

we’ll revisit
exact definition

Recap of week 1

3

Extensional equivalence ()≅
“Two things are equal if the behave the same”

Recap of week 1

3

Extensional equivalence ()≅
“Two things are equal if the behave the same”

facilitates compositional (aka modular) reasoning

Recap of week 1

3

Extensional equivalence ()≅
“Two things are equal if the behave the same”

facilitates compositional (aka modular) reasoning

replace equals by equals in any sub-expression

Recap of week 1

3

Extensional equivalence ()≅
“Two things are equal if the behave the same”

facilitates compositional (aka modular) reasoning

replace equals by equals in any sub-expression

Declarations, binding and scope

Recap of week 1

3

Extensional equivalence ()≅
“Two things are equal if the behave the same”

facilitates compositional (aka modular) reasoning

replace equals by equals in any sub-expression

Declarations, binding and scope

shadowing of bindings

Recap of week 1

3

Extensional equivalence ()≅
“Two things are equal if the behave the same”

facilitates compositional (aka modular) reasoning

replace equals by equals in any sub-expression

Declarations, binding and scope

shadowing of bindings

function declarations bind a closure to the function identifier

Recap of week 1

3

Extensional equivalence ()≅
“Two things are equal if the behave the same”

facilitates compositional (aka modular) reasoning

replace equals by equals in any sub-expression

Declarations, binding and scope

shadowing of bindings

function declarations bind a closure to the function identifier

closure comprises lambda expression and environment with
bindings existing at declaration time

Recap of week 1

4

Pattern matching

Recap of week 1

4

Pattern matching

patterns are used at binding sites of values

Recap of week 1

4

Pattern matching

patterns are used at binding sites of values

eg, val bindings, function arguments, case expression

Recap of week 1

4

Pattern matching

patterns are used at binding sites of values

eg, val bindings, function arguments, case expression

allow us to match against an expected value

Recap of week 1

4

Pattern matching

patterns are used at binding sites of values

eg, val bindings, function arguments, case expression

allow us to match against an expected value

allow us to decompose a value in its constituent parts,
introducing appropriate bindings for parts

Recap of week 1

5

5-step methodology of function declaration

Recap of week 1

5

5-step methodology of function declaration

function name and type1

Recap of week 1

5

5-step methodology of function declaration

function name and type1

REQUIRES: precondition2

Recap of week 1

5

5-step methodology of function declaration

function name and type1

REQUIRES: precondition2

ENSURES: postcondition3

Recap of week 1

5

5-step methodology of function declaration

function name and type1

REQUIRES: precondition2

ENSURES: postcondition3

function body4

Recap of week 1

5

5-step methodology of function declaration

function name and type1

REQUIRES: precondition2

ENSURES: postcondition3

function body4

tests5

Recap of week 1

5

5-step methodology of function declaration

function name and type1

REQUIRES: precondition2

ENSURES: postcondition3

function body4

tests5

Today, we add a 6th step:

Recap of week 1

5

5-step methodology of function declaration

function name and type1

REQUIRES: precondition2

ENSURES: postcondition3

function body4

tests5

Today, we add a 6th step:

correctness proof6

Today’s topic: functional correctness

6

Today’s topic: functional correctness

6

Let’s prove our programs correct, one function at a time!

Today’s topic: functional correctness

6

we will use three kinds of induction:

Let’s prove our programs correct, one function at a time!

Today’s topic: functional correctness

6

we will use three kinds of induction:

Let’s prove our programs correct, one function at a time!

mathematical induction

Today’s topic: functional correctness

6

we will use three kinds of induction:

Let’s prove our programs correct, one function at a time!

mathematical induction

strong induction

Today’s topic: functional correctness

6

we will use three kinds of induction:

Let’s prove our programs correct, one function at a time!

mathematical induction

strong induction

structural induction

Today’s topic: functional correctness

6

we will use three kinds of induction:

Let’s prove our programs correct, one function at a time!

mathematical induction

strong induction

structural induction

we consider how expressions are evaluated

Today’s topic: functional correctness

6

we will use three kinds of induction:

Let’s prove our programs correct, one function at a time!

mathematical induction

strong induction

structural induction

we consider how expressions are evaluated

we may appeal to mathematical properties and assume that SML
implements them correctly

An example: compute nk

(* power : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: power(n,k) ==> n^k, with 0^0 = 1.
*)

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

7

An example: compute nk

(* power : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: power(n,k) ==> n^k, with 0^0 = 1.
*)

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

8

An example: compute nk

(* power : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: power(n,k) ==> n^k, with 0^0 = 1.
*)

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

8

An example: compute nk

(* power : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: power(n,k) ==> n^k, with 0^0 = 1.
*)

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

8

pattern matching

An example: compute nk

(* power : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: power(n,k) ==> n^k, with 0^0 = 1.
*)

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

9

An example: compute nk

(* power : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: power(n,k) ==> n^k, with 0^0 = 1.
*)

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

9

An example: compute nk

(* power : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: power(n,k) ==> n^k, with 0^0 = 1.
*)

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

9

recursive call

An example: compute nk

(* power : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: power(n,k) ==> n^k, with 0^0 = 1.
*)

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

10

An example: compute nk

(* power : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: power(n,k) ==> n^k, with 0^0 = 1.
*)

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

10

this function is not very efficient:

An example: compute nk

(* power : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: power(n,k) ==> n^k, with 0^0 = 1.
*)

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

10

this function is not very efficient:

eg, 37 = 3 * 3 * 3 * 3 * 3 * 3 * 3

An example: compute nk

(* power : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: power(n,k) ==> n^k, with 0^0 = 1.
*)

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

10

this function is not very efficient:

eg, 37 = 3 * 3 * 3 * 3 * 3 * 3 * 3

Number of recursive calls: O(k)

An example: compute nk

(* power : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: power(n,k) ==> n^k, with 0^0 = 1.
*)

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

10

this function is not very efficient:

eg, 37 = 3 * 3 * 3 * 3 * 3 * 3 * 3

Number of recursive calls: O(k)

Can we do better than that?

Idea for making power more efficient

11

this function is not very efficient:

eg, 37 = 3 * 3 * 3 * 3 * 3 * 3 * 3

Number of recursive calls: O(k)

Can we do better than that?

Idea for making power more efficient

11

this function is not very efficient:

eg, 37 = 3 * 3 * 3 * 3 * 3 * 3 * 3

Number of recursive calls: O(k)

Can we do better than that?

Assume we have functions even and square. Now we can get a
more efficient implementation:

Idea for making power more efficient

11

this function is not very efficient:

eg, 37 = 3 * 3 * 3 * 3 * 3 * 3 * 3

Number of recursive calls: O(k)

Can we do better than that?

Assume we have functions even and square. Now we can get a
more efficient implementation:

eg, 37 = 3 * (3 3) 2

Idea for making power more efficient

11

this function is not very efficient:

eg, 37 = 3 * 3 * 3 * 3 * 3 * 3 * 3

Number of recursive calls: O(k)

Can we do better than that?

Assume we have functions even and square. Now we can get a
more efficient implementation:

eg, 37 = 3 * (3 3) 2
= 3 * (3 * (3 1) 2) 2

Idea for making power more efficient

11

this function is not very efficient:

eg, 37 = 3 * 3 * 3 * 3 * 3 * 3 * 3

Number of recursive calls: O(k)

Can we do better than that?

Assume we have functions even and square. Now we can get a
more efficient implementation:

eg, 37 = 3 * (3 3) 2
= 3 * (3 * (3 1) 2) 2
= 3 * (3 * (3 * 1) 2) 2

Idea for making power more efficient

11

this function is not very efficient:

eg, 37 = 3 * 3 * 3 * 3 * 3 * 3 * 3

Number of recursive calls: O(k)

Can we do better than that?

Assume we have functions even and square. Now we can get a
more efficient implementation:

eg, 37 = 3 * (3 3) 2
= 3 * (3 * (3 1) 2) 2
= 3 * (3 * (3 * 1) 2) 2

Number of recursive calls: O(log(k))

A more efficient version of power

(* even : int -> bool
 REQUIRES: true
 ENSURES: even(k) evaluates to true if k is even
 evaluates to false if k is odd.
*)

fun even (k:int) : bool = ((k mod 2) = 0)

(* square : int -> int
 REQUIRES: true
 ENSURES: square(n) ==> n^2
*)

fun square (n:int) : int = n * n

12

A more efficient version of power

(* even : int -> bool
 REQUIRES: true
 ENSURES: even(k) evaluates to true if k is even
 evaluates to false if k is odd.
*)

fun even (k:int) : bool = ((k mod 2) = 0)

(* square : int -> int
 REQUIRES: true
 ENSURES: square(n) ==> n^2
*)

fun square (n:int) : int = n * n

13

A more efficient version of power

(* even : int -> bool
 REQUIRES: true
 ENSURES: even(k) evaluates to true if k is even
 evaluates to false if k is odd.
*)

fun even (k:int) : bool = ((k mod 2) = 0)

(* square : int -> int
 REQUIRES: true
 ENSURES: square(n) ==> n^2
*)

fun square (n:int) : int = n * n

14

A more efficient version of power

(* even : int -> bool
 REQUIRES: true
 ENSURES: even(k) evaluates to true if k is even
 evaluates to false if k is odd.
*)

fun even (k:int) : bool = ((k mod 2) = 0)

(* square : int -> int
 REQUIRES: true
 ENSURES: square(n) ==> n^2
*)

fun square (n:int) : int = n * n

15

A more efficient version of power

(* even : int -> bool
 REQUIRES: true
 ENSURES: even(k) evaluates to true if k is even
 evaluates to false if k is odd.
*)

fun even (k:int) : bool = ((k mod 2) = 0)

(* square : int -> int
 REQUIRES: true
 ENSURES: square(n) ==> n^2
*)

fun square (n:int) : int = n * n

16

A more efficient version of power

(* powere : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: powere(n,k) ==> n^k, with 0^0 = 1.

 powere computes n^k using O(log(k)) multiplies.
*)

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

17

A more efficient version of power

(* powere : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: powere(n,k) ==> n^k, with 0^0 = 1.

 powere computes n^k using O(log(k)) multiplies.
*)

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

18

A more efficient version of power

(* powere : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: powere(n,k) ==> n^k, with 0^0 = 1.

 powere computes n^k using O(log(k)) multiplies.
*)

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

19

A more efficient version of power

(* powere : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: powere(n,k) ==> n^k, with 0^0 = 1.

 powere computes n^k using O(log(k)) multiplies.
*)

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

20

exponent k is even

A more efficient version of power

(* powere : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: powere(n,k) ==> n^k, with 0^0 = 1.

 powere computes n^k using O(log(k)) multiplies.
*)

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

21

A more efficient version of power

(* powere : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: powere(n,k) ==> n^k, with 0^0 = 1.

 powere computes n^k using O(log(k)) multiplies.
*)

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

21

Number of recursive calls: O(log(k))

Let’s verify our naive version of power

22

Let’s verify our naive version of power

(* power : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: power(n,k) ==> n^k, with 0^0 = 1.
*)

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

22

Let’s verify our naive version of power

(* power : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: power(n,k) ==> n^k, with 0^0 = 1.
*)

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

22

How shall we proceed?

Let’s verify our naive version of power

(* power : (int * int) -> int
 REQUIRES: k >= 0
 ENSURES: power(n,k) ==> n^k, with 0^0 = 1.
*)

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

22

How shall we proceed?

Let’s use mathematical induction!

Mathematical (simple, weak) induction

23

Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n:
• show that P(0) holds
• then, show that for all k 0,

P(k+1) follows logically from P(k).
≥

23

Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n:
• show that P(0) holds
• then, show that for all k 0,

P(k+1) follows logically from P(k).
≥

23

base case

Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n:
• show that P(0) holds
• then, show that for all k 0,

P(k+1) follows logically from P(k).
≥

24

Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n:
• show that P(0) holds
• then, show that for all k 0,

P(k+1) follows logically from P(k).
≥

24

inductive step

Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n:
• show that P(0) holds
• then, show that for all k 0,

P(k+1) follows logically from P(k).
≥

25

Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n:
• show that P(0) holds
• then, show that for all k 0,

P(k+1) follows logically from P(k).
≥

25

Why does it work?

Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n:
• show that P(0) holds
• then, show that for all k 0,

P(k+1) follows logically from P(k).
≥

25

Why does it work?

• P(0) is proved directly.

Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n:
• show that P(0) holds
• then, show that for all k 0,

P(k+1) follows logically from P(k).
≥

25

Why does it work?

• P(0) is proved directly.

• P(1) follows from P(0).

Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n:
• show that P(0) holds
• then, show that for all k 0,

P(k+1) follows logically from P(k).
≥

25

Why does it work?

• P(0) is proved directly.

• P(1) follows from P(0).

• P(2) follows from P(1).

Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n:
• show that P(0) holds
• then, show that for all k 0,

P(k+1) follows logically from P(k).
≥

25

Why does it work?

• P(0) is proved directly.

• P(1) follows from P(0).

• P(2) follows from P(1).

• etc…

Let’s verify our naive version of power

26

Let’s verify our naive version of power

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

26

Let’s verify our naive version of power

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

26

Theorem: power(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

Let’s verify our naive version of power

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

26

Proof by mathematical induction on ???

Theorem: power(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

Let’s verify our naive version of power

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

27

Proof by mathematical induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

Let’s verify our naive version of power

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

27

Proof by mathematical induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

k is the integer that
gets smaller!

Let’s verify our naive version of power

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

27

Proof by mathematical induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

k is the integer that
gets smaller!

needed for
applying IH!

Let’s verify our naive version of power

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

28

Proof by mathematical induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

Let’s do the proof together!

Let’s verify our naive version of power

29

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

Theorem: power(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

Let’s verify our naive version of power

29

Proof: By mathematical induction on k.

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

Theorem: power(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

Let’s verify our naive version of power

29

Proof: By mathematical induction on k.
Base case: k = 0.

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

Theorem: power(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

Let’s verify our naive version of power

29

Proof: By mathematical induction on k.
Base case: k = 0.
Need to show: power(n,0) evaluates to n0, for all n. Note: n0 = 1.

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

Theorem: power(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

Let’s verify our naive version of power

29

Proof: By mathematical induction on k.
Base case: k = 0.
Need to show: power(n,0) evaluates to n0, for all n. Note: n0 = 1.
Showing:

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

Theorem: power(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

Let’s verify our naive version of power

29

Proof: By mathematical induction on k.
Base case: k = 0.
Need to show: power(n,0) evaluates to n0, for all n. Note: n0 = 1.
Showing:

power(n,0)

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

Theorem: power(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

Let’s verify our naive version of power

29

Proof: By mathematical induction on k.
Base case: k = 0.
Need to show: power(n,0) evaluates to n0, for all n. Note: n0 = 1.
Showing:

1⟹
power(n,0)

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

Theorem: power(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

Let’s verify our naive version of power

29

Proof: By mathematical induction on k.
Base case: k = 0.
Need to show: power(n,0) evaluates to n0, for all n. Note: n0 = 1.
Showing:

(step, 1st clause of power)1⟹
power(n,0)

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

Theorem: power(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

Let’s verify our naive version of power

30

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

Let’s verify our naive version of power

30

Inductive case: Step from k to k+1, with k 0.≥

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

Let’s verify our naive version of power

30

Inductive case: Step from k to k+1, with k 0.≥
IH: power(n,k) evaluates to nk, for k 0 and all integers n.≥

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

Let’s verify our naive version of power

30

Inductive case: Step from k to k+1, with k 0.≥

Need to show: power(n,k+1) evaluates to nk+1.
IH: power(n,k) evaluates to nk, for k 0 and all integers n.≥

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

Let’s verify our naive version of power

30

Inductive case: Step from k to k+1, with k 0.≥

Need to show: power(n,k+1) evaluates to nk+1.
Showing:

IH: power(n,k) evaluates to nk, for k 0 and all integers n.≥

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

Let’s verify our naive version of power

30

Inductive case: Step from k to k+1, with k 0.≥

Need to show: power(n,k+1) evaluates to nk+1.
Showing:

power(n,k+1)

IH: power(n,k) evaluates to nk, for k 0 and all integers n.≥

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

Let’s verify our naive version of power

30

Inductive case: Step from k to k+1, with k 0.≥

Need to show: power(n,k+1) evaluates to nk+1.
Showing:

n * power(n,k+1-1)⟹
power(n,k+1)

IH: power(n,k) evaluates to nk, for k 0 and all integers n.≥

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

Let’s verify our naive version of power

30

Inductive case: Step from k to k+1, with k 0.≥

Need to show: power(n,k+1) evaluates to nk+1.
Showing:

(step, 2nd clause of power)n * power(n,k+1-1)⟹
power(n,k+1)

IH: power(n,k) evaluates to nk, for k 0 and all integers n.≥

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

Let’s verify our naive version of power

30

Inductive case: Step from k to k+1, with k 0.≥

Need to show: power(n,k+1) evaluates to nk+1.
Showing:

(step, 2nd clause of power)n * power(n,k+1-1)⟹
power(n,k+1)

IH: power(n,k) evaluates to nk, for k 0 and all integers n.≥

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

n * power(n,k)⟹

Let’s verify our naive version of power

30

Inductive case: Step from k to k+1, with k 0.≥

Need to show: power(n,k+1) evaluates to nk+1.
Showing:

(step, 2nd clause of power)n * power(n,k+1-1)⟹
power(n,k+1)

IH: power(n,k) evaluates to nk, for k 0 and all integers n.≥

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

(math)n * power(n,k)⟹

Let’s verify our naive version of power

30

Inductive case: Step from k to k+1, with k 0.≥

Need to show: power(n,k+1) evaluates to nk+1.
Showing:

(step, 2nd clause of power)n * power(n,k+1-1)⟹
power(n,k+1)

IH: power(n,k) evaluates to nk, for k 0 and all integers n.≥

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

(math)n * power(n,k)⟹
n * nk⟹

Let’s verify our naive version of power

30

Inductive case: Step from k to k+1, with k 0.≥

Need to show: power(n,k+1) evaluates to nk+1.
Showing:

(step, 2nd clause of power)n * power(n,k+1-1)⟹
power(n,k+1)

IH: power(n,k) evaluates to nk, for k 0 and all integers n.≥

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

(math)n * power(n,k)⟹
(IH)n * nk⟹

Let’s verify our naive version of power

30

Inductive case: Step from k to k+1, with k 0.≥

Need to show: power(n,k+1) evaluates to nk+1.
Showing:

(step, 2nd clause of power)n * power(n,k+1-1)⟹
power(n,k+1)

IH: power(n,k) evaluates to nk, for k 0 and all integers n.≥

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

(math)n * power(n,k)⟹
(IH)n * nk⟹

n nk⋅⟹

Let’s verify our naive version of power

30

Inductive case: Step from k to k+1, with k 0.≥

Need to show: power(n,k+1) evaluates to nk+1.
Showing:

(step, 2nd clause of power)n * power(n,k+1-1)⟹
power(n,k+1)

IH: power(n,k) evaluates to nk, for k 0 and all integers n.≥

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

(math)n * power(n,k)⟹
(IH)n * nk⟹
(evaluation rule for *)n nk⋅⟹

Let’s verify our naive version of power

30

Inductive case: Step from k to k+1, with k 0.≥

Need to show: power(n,k+1) evaluates to nk+1.
Showing:

(step, 2nd clause of power)n * power(n,k+1-1)⟹
power(n,k+1)

IH: power(n,k) evaluates to nk, for k 0 and all integers n.≥

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

(math)n * power(n,k)⟹
(IH)n * nk⟹
(evaluation rule for *)n nk⋅⟹

nk+1⟹

Let’s verify our naive version of power

30

Inductive case: Step from k to k+1, with k 0.≥

Need to show: power(n,k+1) evaluates to nk+1.
Showing:

(step, 2nd clause of power)n * power(n,k+1-1)⟹
power(n,k+1)

IH: power(n,k) evaluates to nk, for k 0 and all integers n.≥

fun power (_:int, 0:int) : int = 1
 | power (n:int, k:int) : int = n * power(n, k-1)

(math)n * power(n,k)⟹
(IH)n * nk⟹
(evaluation rule for *)n nk⋅⟹
(math)nk+1⟹

Let’s verify our more efficient version of
power, powere

31

Let’s verify our more efficient version of
power, powere

31

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Let’s verify our more efficient version of
power, powere

31

Theorem: power(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Let’s verify our more efficient version of
power, powere

31

Proof by ???

Theorem: power(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Let’s verify our more efficient version of
power, powere

31

Proof by ???

Theorem: power(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Note: k does no longer decrease by one!

Let’s verify our more efficient version of
power, powere

32

Proof by strong induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Strong induction

To prove a property P(n) for every natural number n:
• show that P(0) holds
• then, show that for all k > 0,

P(k) follows logically from {P(0), …, P(k-1)}.

33

Strong induction

To prove a property P(n) for every natural number n:
• show that P(0) holds
• then, show that for all k > 0,

P(k) follows logically from {P(0), …, P(k-1)}.

33

base case

Strong induction

To prove a property P(n) for every natural number n:
• show that P(0) holds
• then, show that for all k > 0,

P(k) follows logically from {P(0), …, P(k-1)}.

34

Strong induction

To prove a property P(n) for every natural number n:
• show that P(0) holds
• then, show that for all k > 0,

P(k) follows logically from {P(0), …, P(k-1)}.

34

inductive step

Strong induction

To prove a property P(n) for every natural number n:
• show that P(0) holds
• then, show that for all k > 0,

P(k) follows logically from {P(0), …, P(k-1)}.

35

Strong induction

To prove a property P(n) for every natural number n:
• show that P(0) holds
• then, show that for all k > 0,

P(k) follows logically from {P(0), …, P(k-1)}.

35

Note: allowed to appeal to IH for any k’ < k!

Strong induction

To prove a property P(n) for every natural number n:
• show that P(0) holds
• then, show that for all k > 0,

P(k) follows logically from {P(0), …, P(k-1)}.

35

Note: allowed to appeal to IH for any k’ < k!

For mathematical induction, IH can only be appealed to for the
immediate predecessor!

Let’s verify our more efficient version of
power, powere

36

Let’s verify our more efficient version of
power, powere

36

Proof by strong induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Let’s verify our more efficient version of
power, powere

36

Proof by strong induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

Notice, the code tells us what induction principle to use!

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Let’s verify our more efficient version of
power, powere

36

Proof by strong induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

Notice, the code tells us what induction principle to use!

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

not immediate
predecessor!

Let’s verify our more efficient version of
power, powere

36

Proof by strong induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

Notice, the code tells us what induction principle to use!

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Let’s do the proof together!

not immediate
predecessor!

Let’s verify our more efficient version of
power, powere

37

Let’s verify our more efficient version of
power, powere

37

Theorem: powere(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Let’s verify our more efficient version of
power, powere

37

Theorem: powere(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Proof: By strong induction on k.

Let’s verify our more efficient version of
power, powere

37

Theorem: powere(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Proof: By strong induction on k.
Base case: k = 0.

Let’s verify our more efficient version of
power, powere

37

Theorem: powere(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Proof: By strong induction on k.
Base case: k = 0.
Need to show: powere(n,0) evaluates to n0, for all n. Note: n0 = 1.

Let’s verify our more efficient version of
power, powere

37

Theorem: powere(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Proof: By strong induction on k.
Base case: k = 0.
Need to show: powere(n,0) evaluates to n0, for all n. Note: n0 = 1.
Showing:

Let’s verify our more efficient version of
power, powere

37

Theorem: powere(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Proof: By strong induction on k.
Base case: k = 0.
Need to show: powere(n,0) evaluates to n0, for all n. Note: n0 = 1.
Showing:

powere(n,0)

Let’s verify our more efficient version of
power, powere

37

Theorem: powere(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Proof: By strong induction on k.
Base case: k = 0.
Need to show: powere(n,0) evaluates to n0, for all n. Note: n0 = 1.
Showing:

1⟹
powere(n,0)

Let’s verify our more efficient version of
power, powere

37

Theorem: powere(n, k) evaluates to nk, for all integer values k
0 and all integer values n.

≥

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Proof: By strong induction on k.
Base case: k = 0.
Need to show: powere(n,0) evaluates to n0, for all n. Note: n0 = 1.
Showing:

(step, 1st clause of powere)1⟹
powere(n,0)

Let’s verify our more efficient version of
power, powere

38

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Let’s verify our more efficient version of
power, powere

38

Inductive case: k > 0.

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Let’s verify our more efficient version of
power, powere

38

Inductive case: k > 0.

IH: powere(n,k') evaluates to nk', for 0 k' k and all integers n.≤ <

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Let’s verify our more efficient version of
power, powere

38

Inductive case: k > 0.

Need to show: powere(n,k) evaluates to nk, for all integers n.
IH: powere(n,k') evaluates to nk', for 0 k' k and all integers n.≤ <

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Let’s verify our more efficient version of
power, powere

38

Inductive case: k > 0.

Need to show: powere(n,k) evaluates to nk, for all integers n.
Showing:

IH: powere(n,k') evaluates to nk', for 0 k' k and all integers n.≤ <

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Let’s verify our more efficient version of
power, powere

38

Inductive case: k > 0.

Need to show: powere(n,k) evaluates to nk, for all integers n.
Showing:

powere(n,k)

IH: powere(n,k') evaluates to nk', for 0 k' k and all integers n.≤ <

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Let’s verify our more efficient version of
power, powere

38

Inductive case: k > 0.

Need to show: powere(n,k) evaluates to nk, for all integers n.
Showing:

(step, 2nd clause of powere)if even(k)⟹
powere(n,k)

IH: powere(n,k') evaluates to nk', for 0 k' k and all integers n.≤ <

then square(powere(n,k div 2))
else n * powere(n,k-1)

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Let’s verify our more efficient version of
power, powere

38

Inductive case: k > 0.

Need to show: powere(n,k) evaluates to nk, for all integers n.
Showing:

(step, 2nd clause of powere)if even(k)⟹
powere(n,k)

IH: powere(n,k') evaluates to nk', for 0 k' k and all integers n.≤ <

then square(powere(n,k div 2))
else n * powere(n,k-1)

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Distinguish two subcases, depending on whether k is even or odd.

Let’s verify our more efficient version of
power, powere

39

Inductive case: k > 0.
Case: k = 2k', for some k' < k, assuming correctness of even.

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Let’s verify our more efficient version of
power, powere

39

Inductive case: k > 0.
Case: k = 2k', for some k' < k, assuming correctness of even.
Showing:

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Let’s verify our more efficient version of
power, powere

39

Inductive case: k > 0.
Case: k = 2k', for some k' < k, assuming correctness of even.
Showing:

powere(n,k)

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Let’s verify our more efficient version of
power, powere

39

Inductive case: k > 0.
Case: k = 2k', for some k' < k, assuming correctness of even.
Showing:

(by assumption about even)square(powere(n, k div 2))⟹
powere(n,k)

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Let’s verify our more efficient version of
power, powere

39

Inductive case: k > 0.
Case: k = 2k', for some k' < k, assuming correctness of even.
Showing:

(by assumption about even)square(powere(n, k div 2))⟹
powere(n,k)

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

(since k = 2k', assuming div is correct)square(powere(n, k'))⟹

Let’s verify our more efficient version of
power, powere

39

Inductive case: k > 0.
Case: k = 2k', for some k' < k, assuming correctness of even.
Showing:

(by assumption about even)square(powere(n, k div 2))⟹
powere(n,k)

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

(since k = 2k', assuming div is correct)square(powere(n, k'))⟹
(IH)square(nk')⟹

Let’s verify our more efficient version of
power, powere

39

Inductive case: k > 0.
Case: k = 2k', for some k' < k, assuming correctness of even.
Showing:

(by assumption about even)square(powere(n, k div 2))⟹
powere(n,k)

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

(since k = 2k', assuming div is correct)square(powere(n, k'))⟹
(IH)square(nk')⟹
(by Lemma)(nk')2⟹

Let’s verify our more efficient version of
power, powere

39

Inductive case: k > 0.
Case: k = 2k', for some k' < k, assuming correctness of even.
Showing:

(by assumption about even)square(powere(n, k div 2))⟹
powere(n,k)

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

(since k = 2k', assuming div is correct)square(powere(n, k'))⟹
(IH)square(nk')⟹
(by Lemma)(nk')2⟹

Lemma: For every integer value n, square(n) evaluates to n2.

Let’s verify our more efficient version of
power, powere

40

Inductive case: k > 0.
Case: k = 2k', for some k' < k, assuming correctness of even.
Showing:

(by assumption about even)square(powere(n, k div 2))⟹
powere(n,k)

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

(since k = 2k', assuming div is correct)square(powere(n, k'))⟹
(IH)square(nk')⟹
(by Lemma)(nk')2⟹

Let’s verify our more efficient version of
power, powere

40

Inductive case: k > 0.
Case: k = 2k', for some k' < k, assuming correctness of even.
Showing:

(by assumption about even)square(powere(n, k div 2))⟹
powere(n,k)

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

(since k = 2k', assuming div is correct)square(powere(n, k'))⟹
(IH)square(nk')⟹
(by Lemma)(nk')2⟹
(math)n2k' = nk=

Let’s verify our more efficient version of
power, powere

41

Inductive case: k > 0.
Case: k = 2k'+1, for some k' < k, assuming correctness of even.

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Let’s verify our more efficient version of
power, powere

41

Inductive case: k > 0.
Case: k = 2k'+1, for some k' < k, assuming correctness of even.
Showing:

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Let’s verify our more efficient version of
power, powere

41

Inductive case: k > 0.
Case: k = 2k'+1, for some k' < k, assuming correctness of even.
Showing:

powere(n,k)

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Let’s verify our more efficient version of
power, powere

41

Inductive case: k > 0.
Case: k = 2k'+1, for some k' < k, assuming correctness of even.
Showing:

(by assumption about even)n * (powere(n, k-1))⟹
powere(n,k)

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

Let’s verify our more efficient version of
power, powere

41

Inductive case: k > 0.
Case: k = 2k'+1, for some k' < k, assuming correctness of even.
Showing:

(by assumption about even)n * (powere(n, k-1))⟹
powere(n,k)

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

(IH)n * nk-1⟹

Let’s verify our more efficient version of
power, powere

41

Inductive case: k > 0.
Case: k = 2k'+1, for some k' < k, assuming correctness of even.
Showing:

(by assumption about even)n * (powere(n, k-1))⟹
powere(n,k)

fun powere (_:int, 0:int) : int = 1
 | powere (n:int, k:int) : int =
 if even(k)
 then square(powere(n, k div 2))
 else n * powere(n, k-1)

(IH)n * nk-1⟹
(math)nk⟹

That's all for today. See you on Thursday!

42

