
15-150 Spring 2012

Lab 15

May 2, 2012

1 Introduction

1.1 Getting Started

Update your clone of the git repository to get the files for this weeks lab as usual by running

git pull

from the top level directory (probably named 15150).

2 Google MapReduce
TM

In this problem, you will define Google MapReduce, which is a useful higher-order function
that computes a dictionary from a sequence. Google MapReduce is inspired by the map

and reduce functions on sequences that we have studied but, as you will see, it’s not just
Seq.mapreduce.

Google MapReduce is defined by the following signature:

signature GOOGLE MAPREDUCE =

sig

structure D : DICT

val gmapred : (’a -> (D.Key.t * ’v) Seq.seq)

-> (’v * ’v -> ’v)

-> ’a Seq.seq

-> ’v D.dict

end

The module D specifies an ordered type D.Key.t of keys, as well as a dictionary on such
keys.

Think of s as a sequence of documents. gmapred extract combine s takes

1. a function extract that extracts key-value pairs from each document (the keys in the
sequence it returns need not be unique) and

1



2. a function combine that combines two values into a single value.

gmapred extract combine s extracts key-value pairs from each document in s, and then
builds a dictionary mapping each key to the value produced by applying combine pairwise
to the values extracted with that key. combine is assumed to be associative, so that the
order in which it is applied to values does not matter.

For example, if MR : GOOGLE MAPREDUCE where D.Key.t is string, then we can count
how many times each word occurs in a collection of documents:

val words : string -> string Seq.seq

fun wordCounts (d : string Seq.seq) : int MR.D.dict =

MR.gmapred (fn s => Seq.map (fn w => (w, 1)) (words s))

(fn (x,y) => x + y)

d

Specifically,

wordCounts <"this is is document 1", "this is document 2">

== ("1" ~ 1,"2" ~ 1,"document" ~ 2,"is" ~ 3,"this" ~ 2)

This is because the extract function pairs each word in the document with 1:

Seq.map (fn w => (w, 1)) (words "this is is document 1")

== <("this",1),("is",1),("is",1),("document",1),("1",1)>

and the combine function sums the counts.
You will implement the following functor:

functor GoogleMapReduce (Key : ORDERED) : GOOGLE MAPREDUCE =

struct

structure D = TreeDict(Key)

fun gmapred extract combine s = ...

end

Task 2.1 Implement a helper function

val collect : (’v * ’v -> ’v) -> (Key.t * ’v) Seq.seq -> ’v D.dict

that takes a sequence of key-value pairs, and produces a dictionary mapping each key in the
sequence to the value resulting from applying combine pairwise to all of the values associated
with it.

For example,

collect (fn (x,y) => x + y) <("this",1),("is",1),("is",1)>

==> ("this" ~ 1, "is" ~ 2)

2



Hint: see datastructures.sig for the DICT signature. This signature contains an operation
merge:

(* merge combine (d1,d2) == d where

- k in d if and only if k is in d1 or k is in d2

- If k~v in d1 and k is not in d2, then k ~ v in d

- If k~v in d2 and k is not in d1, then k ~ v in d

- If k~v1 in d1 and k~v2 in d2, then k ~ combine (v1, v2) in d

*)

val merge : (’v * ’v -> ’v) -> ’v dict * ’v dict -> ’v dict

that will be helpful.

Task 2.2 Implement the function

val gmapred : (’a -> (D.Key.t * ’v) Seq.seq) -> (’v * ’v -> ’v)

-> ’a Seq.seq -> ’v D.dict

as described above. Try to make the span of your implementation as small as

possible. Hint: use collect. You may also wish to use Seq.flatten.

Task 2.3 Test gmapred by running the frequency counting code in WordFreq.

Have the TAs check your work before proceeding!

3



3 Anagrams

Suppose we have a sequence of strings:

<"Ethers are a class of organic compounds that contain an ether group...",

"Elvis began his career there in 1954 when Sun Records owner Sam Phillips...",

"hI thEres do you livEs at three main street?">

In this problem, you will write a function that computes all of the sets of words that are
anagrams of each other. For the above strings, this computes

<<"Ethers","thEres">,

<"ether","there","three">,

<"Elvis","livEs">>

Note that:

• A “word” is a case-sensitive space-delimited sequence of characters. SeqUtils.words

divides a string into a sequence of words.

• Each set contains no duplicates (e.g., <"ether","there","three">
not <"ether","there","three","three">).

• 1-word anagram sets should be excluded (e.g. <are> doesn’t appear).

Task 3.1 Write the function

anagrams : string Seq.seq -> (string Seq.seq) Seq.seq

Hint: datastructures.sig contains some data structures and algorithms that we have
taked about in the course. If you use gmapred with the right notion of key and value, your
code will be quite short.

4


	Introduction
	Getting Started

	Google MapReduce™
	Anagrams

