
15-150 Spring 2012

Lab 14

April 25, 2012

1 Introduction

This lab will give you some practice with writing imperative code, using mutable linked lists.

1.1 Getting Started

Update your clone of the git repository to get the files for this weeks lab as usual by running

git pull

from the top level directory (probably named 15150).

1.2 Methodology

You must use the five step methodology for writing functions for every function you write
on this assignment. In particular, every function you write should have a purpose and tests.

2 Linked Lists

In lecture, we discussed the difference between persistent and ephemeral data structures.
Persistent data structures, the purely functional data we have studied all semester, pro-
vide more functionality : they can have many futures. On the other hand, ephemeral data
structures admit more implementations, in particular imperative ones. Imperative imple-
mentations can sometimes be more time- and space-efficient, and are a good tool to have in
your toolbox—though in most cases purely functional data structures are the right choice.
For example, one of the advantages of an imperative implementation is that you can do
in-place updates : rather than creating a new copy of a value, you modify the original one.
This gives you more direct control over what memory gets allocated, which is sometimes
important—though, again, in the majority of cases, letting the ML run-time deal with this
issue is the right thing to do.

In this lab, we will look at an ephemeral version of lists, which are commonly called linked

lists.

1



datatype ’a cell = Nil

| Cons of ’a * ’a llist

withtype ’a llist = (’a cell) ref

The withtype syntax means that the datatype and type definition are mutually defined;
this allows llist to be used to describe the type of Cons, and we will also use it below.

An llist is a reference (mutable box) containing a cell. A cell is either Nil or Cons,
and in the Cons case, the tail is another llist. This means that the overall llist list can
be assigned to, as can the tail of any Cons.

For example:

val example1 : int llist = ref Nil

val example2 : int llist = ref (Cons (1, example1))

val [1] = tolist example2

val () = example1 := (Cons (2, ref Nil))

val [1,2] = tolist example2

tolist converts an ’a llist to an ’a list. In the fourth line, we update the list con-
tained in the box example1 to Cons(2,refl Nil). This changes example2 as well, because

example2 is constructed using example1!

Task 2.1 To make sure you understand how to read the contents of references, define the
function

tolist : ’a llist -> ’a list

2.1 Map

Task 2.2 Write a function

val map : (’a -> ’a) -> ’a llist -> unit

such that map f l modifies l, so that each element x is replaced with f x. map should do
an in-place update, using only the refs already present in l; you will need new Cons’es.

Task 2.3 Can map be given the type (’a -> ’b) -> ’a llist -> unit? Why or why
not?

Have the TAs check your code before proceeding!

2



2.2 Filter

Task 2.4 Write a function

val filter : (’a -> bool) -> ’a llist -> unit

such that filter p l modifies l, so that only the elements satisfying p remain. filter

should do an in-place update, using only the refs and cells already present in l.

Task 2.5 Explain why you cannot write filter with the following type:

val filter’ : (’a -> bool) -> ’a cell -> unit

2.3 Append

Task 2.6 Define a function

append : ’a llist * ’a llist -> unit

append(l1,l2) should modify l1, replacing the end of it with l2, while keeping l2 un-
changed. append should do an in-place update, using only the refs and cells already
present in l1 and l2.

For example, the following tests that the contents of l1 and l2 are correct, using tolist:

val test1 = ref (Cons (1, ref (Cons (2, ref (Cons (3, ref Nil))))))

val test2end = ref Nil

val test2 = ref (Cons (4, ref (Cons (5, ref (Cons (6, test2end))))))

val () = append(test1,test2)

val [1,2,3,4,5,6] = tolist test1

val [4,5,6] = tolist test2

We also need to test that the sharing is correct: that test1’s tail is in fact test2, rather
than a copy of it. The following example indicates that, because an update to test2 changes
test1:

val () = test2end := Cons (7, ref Nil)

val [4,5,6,7] = tolist test2

val [1,2,3,4,5,6,7] = tolist test1

Have the TAs check your code before proceeding!

3



4 3 2 9

Figure 1: a cyclic linked list of integers

4 3 2 9

Figure 2: an acyclic linked list of integers

3 Cyclic Lists

We say a linked list is cyclic if there exists a path from any node in the list to itself. A linked
list is said to be acyclic if there is no such path. For example, the list in Figure 1 is cyclic
but the list in Figure 2 is acyclic.

There’s nothing wrong with cyclic lists per se, but code that that assumes acyclic input
will almost always fail on cyclic lists. For example, we can define the aforementioned cyclic
list by

val testend = ref Nil

val testmid = ref (Cons (3, ref (Cons (2, ref (Cons (9, testend))))))

val () = testend := !testmid

val testcyclic = ref (Cons (4, testmid))

Task 3.1 What happens when you run tolist on testcyclic? printelts prints the
elements of a list. What happens when you run it on testcyclic?

It is therefore helpful to have a fast way to test if a list is cyclic.

Task 3.2 [BONUS] Define a function

cyclic : ’a llist -> bool

The function cyclic evaluates to false if the argument list is acyclic and true if the
argument list is cyclic.

Your implementation of cyclic must use only a constant amount of space and run in
time at most quadratic in the number of unique cells in the argument list. You will need to
follow the references in the linked list structure, but you may not destroy the linked list. Your
implementation should be purely functional, so you may not have any ephemeral storage.

4


	Introduction
	Getting Started
	Methodology

	Linked Lists
	Map
	Filter
	Append

	Cyclic Lists

