
15-150 Spring 2012
Lab 10

March 28, 2012

1 Introduction

This lab is divided into two parts. First, you will follow given directions to make sure
that you can run the Homework 8 visualization. Second, you will experiement with the
module system. In lecture, we discussed the module system as a way to clearly mark and
enforce abstraction boundaries. In this lab, you will use modules and abstract types from
the perspective of both a client and an implementer.

1.1 Getting Started

Update your clone of the git repository to get the files for this weeks lab as usual by running

git pull

from the top level directory (probably named 15150).

1.2 Methodology

You must use the five step methodology for writing functions for every function you write
on this assignment. In particular, every function you write should have a purpose and tests.

2 Running the Visualizer

If you haven’t run the n-body visualizer already, now is the time to try it. In the code
directory for Homework 7, open an SML REPL and enter the following commands:

- CM.make "sources-real.cm";

[autoloading]

...

val it = true : bool

- Simulation.runPairwise Solars.two_body (Plane.s_fromInt 86400) 365

"transcript.txt";

1

This produces a file transcript.txt in that directory. Then go to

http://www.cs.cmu.edu/~15150/visualizer/

and upload transcript.txt. You will see a brief animation of the earth revolving around
the sun. Please ask for help if you are unable to see this animation.

When you have finished implementing Barnes-Hut, you can run the visualizer with the
output from your algorithm by running Simulation.runBH instead of Simulation.runPairwise.
The arguments are the same as for runPairwise.

3 Dictionaries

A dictionary is a datastructure that acts as a finite map from keys and to values. We
represent a dictionary by a type

(’k, ’v) dict

dict is a type constructor that takes two type arguments (unlike e.g. ’a list, which takes
only one). The first, ’k, represents the type of keys, whereas the second, ’v represents the
type of values. For example, an (int,string) dict maps integers to strings.

There are many possible implementations of dictionaries, including using lists, trees, and
functions. Since there are so many different ways to implement dictionaries, it would be nice
if we could have an abstract interface to them that is the same regardless of the underlying
implementation. This is where the module system comes in.

In LabDict.sig, we have provided the following signature for you to implement for
dictionaries (see Figure 1).

The type and values in it have the following specifications:

• (’k, ’v) dict is an abstract type representing the type of the dictionary. Note that
it is parametrized over two different types—’k, the type of keys, and ’v, the type of
values.

• empty is a dictionary that contains no mappings.

• insert is a function that takes a comparison function for keys1, a dictionary, and a
key-value pair and returns the dictionary with the mapping added. If the key is already
in the dictionary, the new value supersedes the old one.

• lookup is a function that takes a comparison function, a dictionary, and a key, and
returns SOME v if that key maps to the value v in the dictionary, or NONE if there is no
mapping from the key.

We have called this signature LABDICT because it is a version of dictionaries that is small
enough for you to implement in lab; a real dictionary library would provide more operations.

1You may feel a bit uncomfortable adding the comparison function as an argument to each of these
functions, instead wondering why we cannot just abstract over it somehow. If so, good! We will go over this
on Thursday.

2

signature LABDICT =

sig

(* We model a dictionary as a set of key-value pairs written k ~ v:

(k1 ~ v1, k2 ~ v2, ...) *)

type (’k, ’v) dict

(* the empty mapping *)

val empty : (’k, ’v) dict

(* insert cmp (k1 ~ v1, ..., kn ~ vn) (k,v)

== (k1 ~ v1, ..., ki ~ v,...) if cmp(k,ki) ==> EQUAL for some ki

or == (k1 ~ v1, ..., kn ~ vn, k ~ v) otherwise

*)

val insert : (’k * ’k -> order) -> (’k, ’v) dict -> (’k * ’v) -> (’k, ’v) dict

(* lookup cmp (k1 ~ v1,...,kn ~ vn) k == SOME vi

if cmp(k,ki) ==> EQUAL for some ki

== NONE otherwise

*)

val lookup : (’k * ’k -> order) -> (’k, ’v) dict -> ’k -> ’v option

end

Figure 1: Dictionary Signature

3

3.1 Implementation: Binary Search Trees

First, you will implement dictionaries using a binary search tree (BST). Recall the discussion
of binary search trees from when we implemented mergesort on trees: the key invariant is
that, for every Node(l,x,r), everything in l is less than or equal to x, and everything in r

is greater than or equal to x.
To implement dictionaries, we will store both a key and a value at each node, using the

following datatype:

datatype (’k, ’v) tree =

Leaf

| Node of (’k, ’v) tree * (’k * ’v) * (’k, ’v) tree

In Node(l,(k,v),r), k is the key and v is the value. Every key in l should be less than or
equal to k, and every key in r should be greater than k. That is, the keys satisfy the BST
invariant; the values are just along for the ride.

Task 3.1 Create a file TreeDict.sml in which you implement a structure TreeDict matching
the signature LABDICT. You should use the datatype above as the internal representation of a
dictionary. Make sure you ascribe the signature LABDICT to make the type dict abstract!

To test your implementation, you can run the command

- CM.make "sources.cm";

from the REPL. Note that your code will not compile until you make TreeDict.sml and
put a module in it.

To create tests for your code inside the SML file, you can do them normally as we have
been doing all semester. You should put them inside the TreeDict structure.

To test your code from the REPL, you will need to refer to functions inside your
TreeDict structure as components of the module. (i.e. as TreeDict.<function name>

where <function name> is the name of the function you want to run). Recall that you can
only refer to functions that have been defined in the signature.

Some notes about the compilation manager: If you compile your code using CM.make,
the compilation manager will compile all of the files specified in the .cm file. One way to
work is to use CM.make every time you want to compile.

However, this has the disadvantage that none of the project loads if there is a compilation
problem anywhere, which can make debugging harder—you can’t use the REPL to play
around. An alternative is to CM.make when you first start working on a module, assuming
your initial state is one where the CM.make succeeds (this is generally true for the support
code we hand out). Then you can reload the file containing the module you are currently
working on with use after you make updates to it. Note that this will shadow the modules
in that file, and thus not update the modules “downstream”. However, it is useful if you are

4

using emacs, and like to use the emacs command to load the current buffer: you can load one
module repeatedly and use the REPL to test it. It’s also useful if your current implementation
of the module has a bug that causes later files in the .cm file to fail to compile. But when
when you are done working on the module, you will want to run CM.make again to reload all
the downstream modules, so that they refer to your new implementation.

Have the TAs check your code before continuing!

3.2 Client: Polynomials

A multi-variable polynomial is an expression built out of + and ∗ and some constants and
variables. For example, the polynomial

x2 + y2 − 1

is 0 for all points on a circle of radius 1.
We can represent multi-variable polynomials by the following datatype:

datatype poly =

Var of var

| K of real

| Plus of poly * poly

| Times of poly * poly

where var is some type representing variables. For example, we can take

type var = string

and then write x2 + y2 − 1 as

Plus(Times (Var "x", Var "x"),

Plus(Times(Var "y" , Var "y"),

K (~1.0)))

Plus represents +; Times represents ∗; Var represents variables; K represents constants.
You can evaluate a multi-variate polynomial on a particular input, given bindings for

each variable occuring in the polynomial (e.g., both x and y in the example above). We will
represent these bindings as a dictionary mapping variables to reals.

Task 3.2 In the file poly.sml, write the function

evaluate : (var, real) Dict.dict -> poly -> real

that takes a dictionary and a polynomial and evaluates to the value of that polynomial
under the bindings given by the dictionary. If a variable occuring in the polynomial does
not appear in the dictionary, evaluate should raise the exception Unbound.

To load your code, you will once again want to run CM.make. To test your functions at
the REPL, you must refer to them as components of the module, e.g. Poly.Times, Poly.K.
For example, to test the evaluate function you can do something along the lines of:

5

- val D = TreeDict.insert(String.compare)(TreeDict.empty)("x",2.0);

val D = Node (Leaf,("x",2.0),Leaf) : (string,real) TreeDict.dict

- val D’ = TreeDict.insert(String.compare) D ("y",3.0);

val D’ = Node (Leaf,("x",2.0),Node (Leaf,(#,#),Leaf))

- Poly.evaluate D’ (Poly.Plus(Poly.Var "x", Poly.Var "y"));

val it = 5.0 : real

Task 3.3 BONUS TASK: Define infix operators ++, **, and ^^, so that x2 + 2x + 1 can be
written

(Var "x") ^^ 2 ++ K 2 ** (Var "x") ++ K 1

If you want to get really cutesey, define functions ‘ and ‘‘ so that you can write

‘"x"^^2 ++ ‘‘2 ** ‘"x" ++ ‘‘1

6

	Introduction
	Getting Started
	Methodology

	Running the Visualizer
	Dictionaries
	Implementation: Binary Search Trees
	Client: Polynomials

