
15-150 Spring 2012
Lab 6

February 22, 2012

1 Introduction

The goal for this lab is to make you more familiar with continuations, and proofs about
continuations.Please take advantage of this opportunity to practice writing functions and
proofs with the assistance of the TAs and your classmates. You are encouraged to collaborate
with your classmates and to ask the TAs for help.

1.1 Getting Started

Update your clone of the git repository to get the files for this weeks lab as usual by running

git pull

from the top level directory (probably named 15150).

1.2 Methodology

You must use the five step methodology for writing functions for every function you write
on this assignment. In particular, every function you write should have a purpose and tests.

1



2 Proofs about Continuations

Consider the following two functions:

fun sum (t : int tree) : int =

case t of

Empty => 0

| Leaf x => x

| Node(t1,t2) => sum t1 + sum t2

fun sumc (t : int tree) (k : int -> int) : int =

case t of

Empty => k 0

| Leaf x => k x

| Node (l,r) => sumc l (fn a => sumc r (fn b => k (a + b)))

We would like to prove that the continuation-based sumc behaves the same as sum, when
you apply sumc to the identity continuation:

Theorem 1. For all t : int tree, sumc t (fn x => x) ∼= sum t.

We can try to prove this theorem by induction on t.

Task 2.1 Start the case for Node(l,r). Explain why the proof breaks down.
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To fix this, we can generalize the theorem to consider an arbitrary continuation k:

Theorem 2. For all values t : int tree, k : int -> int,
sumc t k ∼= k(sum t)

This says that sumc computes the same sum as sum, and then passes this sum to k.
To combat the problem you encountered above, it is necessary to quantify over k in the

predicate that is proved by induction, so that the inductive hypotheses are general enough.

Task 2.2 Prove “for all t, P (t)” by induction on t, where P is defined by

P (x) = for all k, sumc x k ∼= k(sum x)

You may assume that sum is total.
Case for Empty:
To show:

Proof: Assume a continuation k.

Case for Leaf x:
To show:

Proof:

3



Case for Node(l,r):
IH 1:

IH 2:

To show:

Proof:
When you use an IH, carefully note which continuation the “for all” is instantiated with.
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Have the TAs check your proof before continuing!

3 Programming with Continuations

3.1 Answer types

sumc can in fact be given a more general type than above. Starting from

fun sumc (t : int tree) (k : ?) : ? = <as above>

Task 3.1 Infer the most general type for sumc. Explain why this makes sense.

Task 3.2 Your answer should say that sumc is polymorphic, with one type variable. Give
two example ks, which require instantiating the type variable to two different types.

3.2 Find

Task 3.3 Write a function

fun find (p : ’a -> bool) (t : ’a tree) : ’a option = ...

such that

• if there is some x in t for which p x == true then find p t == SOME x. If there is
more than one x that satisfies p, return the left-most one in the tree.

• find p t == NONE if there is no such x.

Task 3.4 Write a function

fun find_cont (p : ’a -> bool) (t : ’a tree) (k : ’a option -> ’b) : ’b = ...

such that (1) find_cont p t k ∼= k (find p t) and (2) find_cont uses constant stack
space.

Have the TAs check your code before leaving!

5


	Introduction
	Getting Started
	Methodology

	Proofs about Continuations
	Programming with Continuations
	Answer types
	Find


