
15-150 Spring 2012
Lab 5

February 15, 2012

1 Introduction

The goal for this lab is to make you more familiar with higher-order functions in SML.
Please take advantage of this opportunity to practice writing functions and proofs with

the assistance of the TAs and your classmates. You are encouraged to collaborate with your
classmates and to ask the TAs for help.

1.1 Getting Started

Update your clone of the git repository to get the files for this weeks lab as usual by running

git pull

from the top level directory (probably named 15150).

1.2 Methodology

You must use the five step methodology for writing functions for every function you write on
this assignment. In particular, every function you write should have a purpose and tests.

Survey

Please fill out the following survey:

https://www.surveymonkey.com/s/wheredotreescomefrom
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2 Higher-order Functions on Lists

Recall map from lecture, which we will call listmap here:

listmap : (’a -> ’b) * ’a list -> ’b list

listmap (f, L) applies f to each element of L, returning a list of the results; that is,
listmap (f, [v1, ..., vn]) computes [f v1, ..., f vn]

2.1 Filter

Consider the following two functions:

fun evens (l : int list) : int list =

case l of

[] => []

| x :: xs => ( case evenP x of

true => x :: evens xs

| false => evens xs )

fun allLessThan (pivot : int, l : int list) : int list =

case l of

[] => []

| x :: xs => ( case x < pivot of

true => x :: allLessThan (pivot, xs)

| false => allLessThan (pivot, xs) )

The pattern here is “keep all the elements of the list that satisfy some predicate.”

Task 2.1 Define a function

fun filter (p : ’a -> bool, l : ’a list) : ’a list = ...

that abstracts over this pattern. The function p represents the predicate.

Task 2.2 Define evens and allLessThan by calling filter with the appropriate predicate.

Task 2.3 On Homework 4, we hadn’t introduced higher-order functions yet, so for quicksort_l
(quicksorting lists) we had you define a first-order but less-general variant of filter. Rewrite
quicksort_l to use the filter function you defined above.
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2.2 All

Play the same game with these two:

fun allPos (l : int list) : bool =

case l of

[] => true

| x :: xs => (x > 0) andalso allPos xs

fun allOfLength (len : int, l : ’a list list) : bool =

case l of

[] => true

| x :: xs => (inteq(List.length x, len)) andalso allOfLength(len, xs)

Task 2.4 Write a higher-order function all that can be used to define allPos and allOfLength,
and then define these two functions in terms of it.

Have the TAs check your code proof before proceeding!

3 Higher-order Functions on Trees

Last week, we used trees that had data at each node. An alternative is to use trees where
there is data only at the leaves:

An ’a tree is either

1. empty

2. a leaf with value x:’a

3. a node with two subtrees

and that’s it!

Task 3.1 Define a datatype ’a tree representing such trees. Don’t forget to fill in the
constructors you use in the definition of treeFromList in the support code!

Have the TAs check your datatype definition before proceeding!

For many of the higher-order list functions previously discussed, it is possible to define
corresponding functions that operate over trees instead.
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3.1 Map

Task 3.2 Write the function

treemap : (’a -> ’b) * ’a tree -> ’b tree

such that treemap (f,t) computes a tree whose elements are given by applying f to the
elements in t.

Using treemap, write the function

treemult : int * int tree -> int tree

such that treemult (c, T) evaluates to the tree T’ where each node in T’ contains the
element in that node of T multiplied by c.

3.2 All

Task 3.3 Write the function

treeall : (’a -> bool) * ’a tree -> bool

such that treeall (p, T) evaluates to true if p x evaluates to true for each element x of
T, and evaluates to false otherwise. Using treeall, write the function

nattree : int tree -> bool

such that nattree T evaluates to true if all of the elements of T are natural numbers (that
is, greater than or equal to zero).

3.3 Reduce

Assuming the constructors for tree are named Empty, Leaf, and Node, here are two functions:

fun sum (t : int tree) : int =

case t of

Empty => 0

| Leaf x => x

| Node(t1,t2) => (sum t1) + (sum t2)

fun max (t : int tree) : int =

case t of

Empty => 0

| Leaf x => x

| Node(t1,t2) => Int.max((max t1), (max t2))
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Though we should perhaps be using options instead, we will define the sum and max of an
empty tree to be 0.

The general pattern here is called reduce, which takes a binary operator of type ’a *

’a -> ’a to apply at each node, and a value of type ’a for the empty tree, and computes
an ’a from an ’a tree.

Task 3.4 Write the function

treereduce : (’a * ’a -> ’a) * ’a * ’a tree -> ’a

that implements the operation of reduction on trees. Using treereduce, rewrite the above
functions.

Have the TAs check your functions before proceeding!

4 Map/reduce Puzzles

We have provided

lines : string -> string tree

words : string -> string tree

lines divides a string into lines (delimited by the newline character). words divides a string
into words (delimited by spaces or newlines).

Task 4.1 Define functions

(* computes the number of words in a document *)

fun wordcount (s : string) : int = ...

(* computes the number of words in the longest line in a document *)

fun longestline (s : string) : int = ...

These functions should not be defined recursively.
For example, given the string

for life’s not a paragraph

And death i think is no parenthesis

wordcount should return 12, and longestline should return 7. Note that you can type in
this document using \n for newlines:

"for life’s not a paragraph\nAnd death i think is no parenthesis\n"
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