15-150 Spring 2012
Lab 3

February 1, 2012

The goal for the third lab is to make you more comfortable writing functions in SML that
operate on lists, and doing analysis and proofs.

Take advantage of this opportunity to practice writing functions and proofs with the
assistance of the TAs and your classmates. You are encouraged to collaborate with your
classmates and to ask the TAs for help.

Remember to follow the methodology for writing functions—specifications and tests are
part of your code! When writing tests for functions that can raise exceptions, you currently
only need to write tests for the cases that don’t raise exceptions.

1 Introduction

1.1 Getting Started

Update your clone of the git repository to get the files for this weeks lab as usual by running
git pull
from the top level directory (probably named 15150).

2 Evens

Task 2.1 Write a function
evens : int list -> int list
that filters out all odd elements of a list without changing the order. For example,
evens|0,0,4] = (0,0, 4]

evens|| & ||

evens|0,0,4,9,3,2] = (0,0, 4, 2]

You should use the function evenP that we provided from last lab to determine if a number
is even.



3 Fibonacci

3.1 Simple Fibonacci

Name that integer sequence:
1,1,2,3,5,8,13,21, ...

That’s right; it’s Fibonacci!
Here’s the obvious way to implement it:

fun fib (n : int) : int =

case n of
"1 =>0
0 =>1
1 =>1

=> fib (n - 1) + fib (n - 2)

We're going to add the harmless but slightly strange base case defining the negative first
element of the sequence to the definition as well; you’ll see why later in lab, but just go with
it for now.

Like evenP in lab last week, this function has three useful cases—zero one and 2 + n
(we won’t count the negative one case). The new thing about this function is that it makes
recursive calls not just on n — 2 but also on n — 1.

Because of these two recursive calls, the recurrence for the work looks like this:

Wfib(o) = ko
Wfib<1) =k
Wein(n) = ko + Wesp(n — 1) + Wesp(n — 2) for non-zero n

This is not so helpful, since it says that the time to compute the n*" Fibonacci n is the n'”
Fibonnaci number!
However, if we can get an upper bound for this recurrence as follows:

Wfib(o) = ko
Wfib<1> = kl
Wein(n) < ko + 2Weip(n — 1)for non-zero n

Because Wein(n) is monotonically increasing (it’s never smaller on bigger inputs), we can
pretend that it’s two recursive calls on n — 1.
If you write it out, you can see that the closed form of this recurrence is

Wen(n) = ko + ky + kg 2" — 1

To see this, you can write the recursion out as a tree. fib does k2 work at each recursive
call, so we can label each node with k2. Each node has two children, because each call makes
two recursive calls.



k2
k2 k2
k2 k2 k2 k2

The k5 is uniform, so factor it out

We want to count the number of nodes in this tree. The total has the form 1+24+4+8+416+. . ..
The reason is that the tree has n levels, because the recurrence recurs on n — 1, and the i'h
level has 2¢ work. Thus, the total amount of work is

>
i=1

If you look it up, the closed form of this sum is 2"*! — 1 (cf. how many binary numbers are
there with n bits).

Once you've written out the closed form, it’s clear that this recurrence is O(2"), just by
forgetting the constants.

3.2 Fast Fibonacci

In this problem, you will show that you can compute Fibonacci more efficiently. The key
insight is that one of the recursive calls can be reused each time:

To compute We need

fib n fib (n-1) and fib (n-2)
fib (n-1) fib (n-2) and fib (n-3)
fib (n-2) fib (n-3) and fib (n-4)

So we really don’t need two recursive calls, if we reuse the same computaton of fib n the
two times we use it. To implement this, you must generalize the problem so that we compute
both fib n and fib (n-1).

3.2.1 Programming

Task 3.1 Implement a function
fastfib : int -> int * int

such that for all nats n, fastfib n = (fib(n — 1), £ib n)
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3.2.2 Analysis

Task 3.2 Write a recurrence for the work of fastfib, Weagein-
Task 3.3 Compute and informally justify the closed form for your recurrence.

Task 3.4 Give a tight big-O bound for this closed form.

3.2.3 Proof

Task 3.5 Prove the spec:
Theorem 1. For all natural numbers n, fastfib n= (ftb (n - 1) , fib n)

Use the template on the following page. Have your TA check your work once you finish.



Theorem 2. For all natural numbers n, fastfib n = (ftb (n - 1) , fib n)

The proof is by induction on m.

e Case for 0

To show:

Proof:

e Case for 1 + k
Inductive hypothesis:

To show:

Proof:



Have a TA check your code, analysis, and proof for fastfib before proceeding.
4 Merging Two Lists

Task 4.1 Write a function
merge : int list * int list -> int list

that merges two sorted lists into one sorted list. You should assume that your input lists are
sorted in increasing order, and the list you return should also be in increasing order.

Task 4.2 Write a recurrence relation for the work of merge, in terms of the lengths of 11
and 12. What is the O of this recurrence?

Task 4.3 Prove the following correctness theorem about merge:

Theorem 3. For all lists of integers 11 and 12, if 11 and 12 are both sorted in increasing
order, then merge (11, 12) is sorted in increasing order.

Hint: In your proof, you will need a lemma about how the contents of merge(11,12)
relates to 11 and 12. You should state this lemma, and convince yourself it is true, but you
don’t need to prove it formally.



