15-150 Spring 2012
Lab 2

25 January 2012

The goal for the second lab is to make you more comfortable writing functions in SML
using the methodology discussed in the last couple of lectures, and doing inductive proofs.
Please take advantage of this opportunity to practice with the assistance of the TAs and
your classmates: You are encouraged to collaborate with your classmates and to ask the
TAs for help!

1 Introduction

1.1 Getting Started
Update your clone of the git repository to get the files for this weeks lab as usual by running
git pull

from the top level directory (probably named 15150).

1.2 Setting up Emacs/Vim

SML is best written in a text editor. Emacs and Vim are the two clear choices for text editors
in a modern UNIX environment. Emacs specifically contains an excellent mode specifically
for editing SML. To install Emacs sml-mode on your Andrew Emacs setup, simply run

emacs_setup

from a terminal at your cluster machine or by SSH-ing into one of the Andrew UNIX time-
share servers. This will make emacs open all files ending in .sml in sml-mode, giving you
syntax highlighting and indentation support.

To start SML as a subprocess of emacs, enter the command

M-x run-sml

This will load the SML/NJ REPL as a buffer in emacs which you can then interact with
in the same way would interact with the REPL when running it stand-alone. To load the
current buffer into SML, enter the command



C-c C-b

More extensive documentation on emacs sml-mode can be found at

http://www.smlnj.org/doc/Emacs/sml-mode.html

If have experience using Vim and prefer that over emacs feel free to continue using it. If
you have not done so already, you should add some settings to your .vimrc file for things
like smart tab indentation and parenthesis matching. There are various useful links about
setting up and using Vim on the course website, and Google is always your friend as well.
If you use Vim, or are uncomfortable using multiple processes inside emacs, you should open
two terminals or SSH sessions so you can be editing your file in Vim in one and interacting
with the SML REPL in the other. This will save a tremendous amount of time and effort.
As always, please ask your TAs or those around you for help if you’d like it.

1.3 Methodology

Recall from lecture the five step methodology for writing functions:

1.

Write the type of the function. For example, the first step we took in writing the
function double was to write the declaration:

fun double (n : int) : int = ...

which specifies that double has type int -> int.

. Write the purpose or specification of the function. This should appear in a comment

above the body of the function.

. Write a few examples of how the function should transform a value of the argument

type into a value of the result type. This should also appear in a comment above the
body of the function.

. Write the body of the function. The purpose and the examples will help you with this

step. The body will often follow a pattern of recursion like the ones given later in this
lab.

Finally, test the function. The examples can be turned into tests. We can write these
tests using pattern matching since constants are patterns in SML.

Putting these five steps together results in code that looks like this:

(* Purpose: double the number n
* Examples:

*
*

double 0 ==> 0
double 2 ==> 4



%)
fun double (n : int) : int = <... body of double ...>

(* Tests for double *)
val O = double O
val 4 = double 2

Make sure to use this five step methodology for all of the functions you write.

2 Recitation Time: let, Pairs, and Recursion

The TAs will introduce a few new things: the let construct, pairs, and alternate recursion
schemes. See the end of the Lecture 3 notes to review this material.

3 Recursion on the Natural Numbers

We will write several recursive functions over the natural numbers.

3.1 Structural Recursion

The bodies of the first two of these functions will follow the basic pattern of structural
recursion that we discussed in lecture. To review: They will consist of a case statement on
the argument that has two branches. The first branch will specify the base case when the
argument is zero. The second branch will specify the induction case when the argument is
greater than zero. The induction case will include a recursive application of the function
to an argument that is one less. So the definitions of the first two functions will match the
pattern:

fun £ (x : int) : int =

case x of
0 => (* base case *)
| _=> ... f (x-1)

with the base case and ellipses filled in appropriately based on the purpose of the function.

Summorial We begin by writing a recursive function that takes a natural number, n, and
calculates the sum of the numbers from 0 to n:

summorial n ==>0+1+2+...+n

Task 3.1 Define the summ function such that summ n equals the sum of the natural numbers
from 0 to n. Remember to follow the steps of the methodology. What should the type of



summ be? Write a purpose for summ and a few examples. Write the body of the summ function
and as you write it, attempt to justify its correctness to yourself. After you write the body
of the function, write a few tests based on your examples.

Squaring We will now write a recursive function with a more complicated induction case.

Task 3.2 Define the square function such that square n returns the product of n with
itself. Remember to follow the five step methodology. Do not use integer multiplication in
the body of square. Hint: You may apply the double function in the body of square, and

use the following identity:
n*=(mn-1724+2n-1

Have the TAs check your work before proceeding!

3.2 More Advanced Patterns of Recursion

Odd Recall the evenP function of type int -> bool that transforms a natural number,
n, into true if and only if it is even (the definition of evenP is given in lab2.sml). This
definition uses a different pattern of recursion:

To define a function on all natural numbers, it suffices to give cases for

e 0
o 1
e 2 + n, using a recursive call on n

Therefore, the case statement in the body of evenP has three branches rather than two. The
first two branches give the base cases, and the third branch includes a recursive application
of the function to the natural number that is two less than the argument:

fun g (x : int) : bool =
case x of
0 => (* base case 0 x)
| 1 => (* base case 1 *)
| _=> ... g (x-2)



with the base cases and ellipses filled in appropriately based on the purpose of the function.
We will now define the oddP function using this pattern.

Task 3.3 Define the oddP function of type int -> bool that transforms a natural number n
into true if and only if it is odd. Once again, remember to follow the five step methodology.

Do not call evenP in the definition of oddP. Hint: How do the base cases of evenP and oddP
differ?

Divisible by Three Next, you will define a function divisibleByThree : int -> bool
such that divisibleByThree n evaluates to true if n is a multiple of 3 and to false
otherwise. Do not use the SML mod operator for this task.

Task 3.4 Define this function, following the five-step methodology. Hint: You will need a
new pattern of recursion to define this function. Explain the pattern here:

To define a function on all natural numbers, it suffices to give cases for

Have the TAs check your work before proceeding!



4 Two-argument Functions

Suppose we didn’t have + built in; how could we define it?
So far we have only defined functions with argument type int. In this problem, you will
define a two-argument function

fun add (x : int, y : int) : int = ...

that computes the sum of x and y. Hint: The body of the add function should start with
a case statement on x. The base case will give the sum of 0 and y, and the induction case
will use the sum of x-1 and y to compute the sum of x and y. That is, add should follow
the pattern of structural recursion on .

Task 4.1 Define the add function that computes the sum of a pair of natural numbers. You
may use SML addition and subtraction of int constants in the definition of add (e.g. + 1
and - 1), but you may not add two variables. Remember to follow the five step methodology.

5 Induction

Ask a TA to check your definition of add before doing this task!

If you defined add correctly, then it is a simple calculation to see that for any n,
add (0,n) = n.

However, to show that for all natural numbers m, add (m,0) = m. requires an inductive
proof. In this proof, we do induction on only the first argument m, leaving the second
argument alone.

Task 5.1 Fill in the proof on the following page.



Theorem 1. For all natural numbers m, add (m,0) = m.

The proof is by induction on m.

e Case for 0

To show:

Proof:

e Case for 1 + k
Inductive hypothesis:

To show:

Proof:



