15-150 Spring 2012
Lab 1

January 18, 2011

Welcome to 15-150’s first lab! Each Wednesday, we will give you some problems to work
on with the assistance of the TAs. Since you are just getting started, this week will cover
some of the basics. Think of this lab as a first date, where you and SML are just getting to
know each other a little.

1 Getting Started

1.1 Setting Your Path

If you are logged in to a cluster machine running Linux or OS X, or ssh’d into one of the
UNIX machines, we have provided a macro called smlnj that you can use in

/afs/andrew/course/15/150/bin/smlnj

To be able to conveniently use this without typing the entire path each time, you will need
to modify your $PATH environment variable. First, determine which shell you are running
with the command echo ${SHELL}.

1.1.1 If $SHELL is /bin/bash

If the result is /bin/bash (or something ending in bash), add the line
PATH="/afs/andrew/course/15/150/bin: ${PATH}"; export PATH

to the file .bashrc in your home directory.
To actually bring this new definition for PATH into effect, you can either start a new shell
or type

source ~/.bashrc

1.1.2 If $SHELL is /bin/csh

If the result is /bin/csh (or something ending in csh), add the line
set path = ($path /afs/andrew/course/15/150/bin/ .)

to the file .cshrc in your home directory. If you get an error when you try to run smlnj
after adding this line to your .cshrc, ask a TA to look at your .cshrc.

To actually bring this new definition for PATH into effect, you can either start a new shell
or type

source ~/.cshrc

Now that you have done this, you can run SML with the command smlnj. If you want
to run SML from your own machine, you have a few options. If you have SML installed
locally, you just type sml to get to the repl. You may notice that this does not allow you to
conveniently navigate the interface with the arrow keys to access other places on the line or
your command history; if you want to do this, you have to run rlwrap sml, where rlwrap
is part of GNU Readline. You should be able to install this with your package manager on
a linux distribution, or with MacPorts on OS X. Also note that smlnj is just a macro we
defined for rlwrap sml, so you may find it beneficial to do the same thing on your local
machine. There are installation instructions for SML on the course website.

Keep in mind that you can access the unix machines from any machine with an internet
connection by sshing to unix.andrew.cmu.edu; this may be more convenient than setting
up SML to run locally.

When you run SML, you should get something that looks like:

hgbovik@unix14 hgbovik % smlnj
Standard ML of New Jersey v110.69 [built: Wed Apr 29 12:25:34 2009]

This is the SML REPL (read-eval-print-loop): it reads the programs you enter, evaluates
them, prints the result, and then waits for more input.
To get out of the REPL, type Control-d.

1.2 Cloning The git Repository

git is a popular version control system. We will be using a git to distribute all of the files
for your homeworks and labs to you for this semester. It will also include compiling versions
of code from lecture for you to play with, and various other helpful documents as the course
progresses.

Task 1.1 Follow the instructions in Section 2 of

http://www.cs.cmu.edu/~15150/resources/git.pdf

and check out the git repository to get the files for this lab.
Once the git repository has been copied over, you should change into the code directory
for this lab. Assuming you named your copy of it 15150, that means you should do

cd 15150/1ab/01/code/

The whole process of checking out the git repository should look like the following
transcript:

hgbovik@unix14 hgbovik % 1s

oldfiles private public www

hgbovik@unix14 hgbovik % cd private

hgbovikQunix14 private % 1s

hgbovik@unix14 private % git clone /afs/andrew.cmu.edu/course/15/150/handout 15150
Initialized empty Git repository in
/afs/andrew.cmu.edu/usr12/hgbovik/private/15150/.git/
hgbovik@unix14 private % 1ls

15150

hgbovik@unix14 private % cd 15150/

hgbovik@unix14 15150 % 1s

docs 1lab 1lecture src

hgbovik@unix14 15150 % cd lab/01/code

hgbovik@unix14 code % 1ls

lab01.sml

hgbovik@unix14 code % smlnj

Standard ML of New Jersey v110.69 [built: Wed Apr 29 12:25:34 2009]

2 Arithmetic

From here, we can type in SML expressions for sml/nj to evaluate. For example, if we want
to add 2 4+ 2, we write 2 + 2;.

Task 2.1 Type
2 + 2;

into the REPL and press Enter. What is SML’s output?

The output line, val it = 4 : int, is the result of evaluating the expression that you
gave it. it is the default name for variables if a name is not provided, 4 is the actual result,
and int is the type of the expression - in this case, an integer. SML uses types to ensure
at compile time that programs cannot go wrong in certain ways; the phrase 4 : int can be
read “4 has type int”.

Notice that the expression must be terminated with a semicolon; if we do not do this,
the REPL does not know to evaluate the expression and expects more input.

Task 2.2 Type
2+ 2

(note there is no semicolon) into the REPL and press Enter. What is SML’s output?

After doing that, type just a semicolon. What happens now?

As you can see, it is possible to put the semicolon on the next line and still get the same
result.

2.1 Parentheses

In a math class a long time ago, you probably learned the rules of operator precedence - for
example, you multiply before you add, but anything grouped in parentheses gets evaluated
first. SML follows the exact same rules of precedence. Also note that you can add parentheses
to expressions to change the order of evaluation.

Task 2.3 Type
1 +2 % 3+ 4

into the REPL. What would you expect the result to be? What is the actual result?

Now, type
(1 +2) x @3+ 4);

into the REPL. Is the result the same?

3 Evaluation

As you were determining how your expressions evaluated, you may have gone step-by-step,
evaluating each of the arithmetic operations one at a time. As it turns out, this is how we can
determine the runtime of an expression. For example, (1 + 1) + 1 steps to 2 + 1, which
steps to 3, which is a value, at which point evaluation stops. In this case, then, evaluation
takes two steps to complete. For our purposes, we say that all arithmetic operations take
exactly one step of computation and numbers take zero steps.

Task 3.1 Figure out how many steps it takes to evaluate (1 + 2) * (3 + 4), writing out
each intermediate step.

3.1 Expression Trees

Another important property of these additions is that there are no data dependencies. Sup-
pose we have some expression (...) + (...), where each set of parentheses contains a large
subexpression. Instead of arbitrarily choosing a side to evaluate first, in a parallel setting it
is possible to evaluate both sides at once!

Instead of just listing the intermediate values, then, it is possible to draw a tree that
represents the cost graph of the evaluation. For example, the tree for (1 + 1) + (2 + 2)

looks like

The leaves represent values that do not need any computation to evaluate. In this case,
the only other nodes in the tree are arithmetic operations, which we have defined to have a
cost of 1.

Task 3.2 Write the tree for (1 + 2) * (3 + (4 * 5)). You may want to use another sheet
of paper.

3.2 Work and Span

Given an expression, we can determine its work, which is the total number of operations that
need to be done to evaluate the expression, and its span, which is the length of the longest
critical path—a sequence of operations that each depend on the results of the previous one.
For example, the value of (1 + 1) + (2 + 2) depends on the value of 2 + 2.

Once we have written an expression as a tree, the work is the size (number of non-leaf
nodes) of the tree, and the span is the depth (length of the longest path) of the tree.

Work For example, in the case of (1 + 1) + (2 + 2), the work is 3, since there are three
additions that need to be made. This is the same as the cost of evaluating the expression
sequentially, on a machine with only one processor.

Task 3.3 What is the work associated with the tree for (1 + 2) * (3 + (4 * 5))7

Span Span, on the other hand, is the length of the longest path from the root to a leaf.
This is also the optimal cost of parallel computation, assuming enough processors. For
example, the depth of (1 + 1) + (2 + 2) is 2.

Task 3.4 What is the span associated with the tree for (1 + 2) * (3 + (4 * 5))7

Keep in mind that this is the optimal cost - if there are not enough processors, the cost
could be somewhere between the work and the depth. We will do a bunch of work and span
analysis this semester.

4 Types

There are more types than just int in SML. For example, there is a type string for strings
of text.

Task 4.1 Type
Ilfooll ;
into the REPL. What is the result?

Strings, then, behave just like integers - instead of seeing a number as the output, you
see the string. It is also possible to concatenate two strings, using the = operator. This can
be used just like + is used on integers.

Task 4.2 Type

Ilfooll ~n barll;

into the REPL. What is the result?

We can write a program that is not well-typed to see what SML does in that situation.
For example, you can only concatenate two strings.

Task 4.3 What happens when you try to type the expression
3°7;
into the REPL?

This is an example of one of SML’s error messages - you should start to familiarize
yourselves with them, as you will be seeing them quite a lot this semester!

5 Variables

Above, we mentioned that the results of computations are bound to the variable it by
default. This means that once we have done one computation, we can refer to its result in
the next computation:

Task 5.1 Type

2 + 2;

into the REPL. Then, type
it * 2;

into the REPL. What is the result?

As you can see, it stands for the result of the previous expression. Of course, it is not the
only name possible for a variable. We can choose which name the REPL gives to a variable
with the keyword val. Similar to the REPL’s output, we say val <varname> : <type> = <exp>
to bind the result of <exp> to <varname>.

Task 5.2 Type
val x : int = 2 + 2;

into the REPL. What is the result? How does it differ from just writing 2 + 2;7

As you can see, that declaration binds the value of 2 + 2 to the variable x. We can now
use the variable:

Task 5.3 Type

X;
into the REPL; what is the result?
Task 5.4 Type

val y : int = x * Xx;

into the repl. What is the result?
Task 5.5 Try to type

val z : int = "3";

into the REPL. What happens? Why?
Task 5.6 After that, try to type

zZ * z;

into the REPL. What happens? Why?

As you can see, trying to define a variable with the wrong type is an error, as is trying to
refer to a variable that is not defined. It is also important to keep in mind that variables in
SML are different from variables in Cy and other imperative programming languages. Each
time a variable is declared, SML creates a fresh variable. If the name was already taken, the
new definition shadows the previous definition: the old definition is still around, but uses of
the variable refer to the new definition. We’ll talk about this more in lecture tomorrow.

Task 5.7 Write the following in the REPL:

val x : int = 3;
val x : int = 10;
val x : string = "hello, world";

What are the value and type of x after each line?

6 Using Files

Now that we have written some basic SML expressions, we can take a look at something a
little more interesting: getting input from files. We have provided the file 1ab01.sml for you
in the git repo you cloned in task 1.1. under 1ab/01/code/

Back in SML, to load it into the REPL, type use "1lab01.sml";. The output from SML
should look like

- use "labO1l.sml";
[opening lab01.sml]

val it = () : unit

Now that you have done this, you have access to everything that was defined in 1ab01.sml,
as if you had copied and pasted the contents of the file into the REPL.

7 Functions

7.1 Applying functions

In this file, notice that there are functions defined. For example, there is

(* takes an int and returns the corresponding string *)
val intToString : int -> string

In this case, the function can be invoked by writing intToString(37). However, the
parentheses around the argument are actually unnecessary. It doesn’t matter whether we
write intToString 37 or (((intToString) (37))) — both are evaluated exactly the same.

Task 7.1 Type
(intToString 37) ~ " " =~ (intToString 42);
into the REPL. What is the result?

7.2 Defining functions

Now, recall Tuesday’s lecture, in which we discussed ways to compute the number of students
who had taken 15-122 in parallel, where we compute each row individually. We represented
this with a data structure called a sequence, which we will discuss in more detail later in the
course. It is somewhat straightforward to construct a sequence, though, using the function
cons. For example, if we represent the class as two rows of three students each:

rowl : yes yes no
row2 : no yes no

the corresponding values are

val rowl : row cons (1 , cons (1 , cons (O , empty())))
val row2 : row cons (0 , cons (1 , cons (0 , empty())))
val classroom : students = cons (rowl , cons (row2 , empty()))

9

Note that we do need parentheses around the arguments to cons in this case, since it
takes multiple arguments—an element, and a sequence to add it to. cons (x,S) returns the
result of putting the element x onto the beginning of sequence S.

Task 7.2 Write expressions rowl, row2, row3, and classrooml to represent the class

rowl : yes no yes yes
Tow2 : no no no yes
row3 : yes yes no no

Task 7.3 Write expressions row4, rowb, row6, and classroom2 to represent the class

rowd : yes yes yes yes
rowb : yes yes yes yes
rowb : yes yes yes yes

Also note the function count in 1ab01.sml. This determines the number of students in a
class who have taken 15-122 by first counting the number of students in each row (potentially
in parallel), then summing up the results of the rows. There is also a function

(* returns 1 if everyone in the row has taken 122, returns O otherwise *)
val allInRow : row -> int

Task 7.4 Think through how allInClassroom classrooml and allInClassroom classroom?2
run, analogously to how we acted out count in lecture. What values should each of them
produce?

Task 7.5 Using allInRow, write a function allInClassroom that returns 1 if everyone in
the class has taken 15-122 and 0 otherwise. Your solution should have a similar structure
to count. The code for count can be found in the file 1ab01.sml that you copied into
your directory, which you can open in any text editor (emacs, vim, ...). This code is also
discussed in the Lecture 1 notes, which are available from the web page.

Test your function by evaluating allInClassroom classrooml and allInClassroom classroom2.
Note that you can open up and edit 1ab01.sml to see the exiting definitions and make your
additions.

10

