
15-150 Spring 2012
Homework 10

Out: 24 April, 2012
Due: 2 May, 2012, 0900 EST

1 Introduction

This homework will give you additional practice with imperative programming in SML. It
is slightly short to give you time to prepare for the final.

1.1 Getting The Homework Assignment

The starter files for the homework assignment have been distributed through our git repos-
itory as usual.

1.2 Submitting The Homework Assignment

To submit your solutions, place your modified memo.sml and hw10.pdf files in your handin
directory on AFS:

/afs/andrew.cmu.edu/course/15/150/handin/<yourandrewid>/hw10/

Your files must be named exactly: memo.sml and hw10.pdf. After you place your files in
this directory, run the check script located at

/afs/andrew.cmu.edu/course/15/150/bin/check/10/check.pl

then fix any and all errors it reports.
Remember that the check script is not a grading script—a timely submission that passes

the check script will be graded, but will not necessarily receive full credit.
Your memo.sml file must contain all the code that you want to have graded for this

assignment and compile cleanly. If you have a function that happens to be named the same
as one of the required functions but does not have the required type, it will not be graded.
Modules must ascribe to the specified signatures or they will not be graded.

1



1.3 Methodology

You must use the four step methodology for writing functions for every function you write on
this assignment. In particular, you will lose points for omitting the purpose or tests (unless
otherwise specified) even if the implementation of the function is correct.

1.4 Style

We will continue grading this assignment based on the style of your submission as well as its
correctness. Please consult course staff, your previously graded homeworks, or the published
style guide as questions about style arise.

1.5 Due Date

This assignment is due on 2 May, 2012, 0900 EST. Remember that this deadline is final and
that we do not accept late submissions.

1.6 The SML/NJ Build System

This assignment is comprised of multiple source files (although you are only to turn in a single
file). The compilation of these is again orchestrated by CM through the file sources.cm.
Instructions on how to use CM can be found in the previous homework handouts.

2



2 Pebbling

A

B C

D E F G

H I

J

Figure 1: Example Graph for Pebbling

In lecture we discussed pebbling a graph to represent the scheduling of work to processors.
For a series-parallel graph, a p-pebbling must obey the following rules:

1. Begin by placing a pebble on the source (i.e., the top node in the graph by convention).

2. In each subsequent step, pick up the pebbles and mark the nodes that had pebbles on
them as visited. Then place pebbles on up to p nodes whose predecessors have all been
visited.

3. The pebbling is completed when the sink (i.e., the bottom node in the graph by
convention) has been visited.

There are many possible strategies for p-pebbling. In lecture, we discussed p-DFS and
p-BFS. Recall that DFS prefers the left-most bottom-most available nodes, whereas BFS

3



prefers the higher nodes and then goes left-to-right. Consider the graph in figure 1. A 2-
DFS traversal of this graph results in the assignment of pebbles to nodes indicated in the
following table:

Time Step Pebble 1 Pebble 2

1 A
2 B C
3 D E
4 H F
5 G
6 I
7 J

Observe that a pebble is placed on node H before a pebble is placed on node G because this
is a depth-first traversal. A 2-BFS traversal of this graph results in the following assignment
of pebbles to nodes:

Time Step Pebble 1 Pebble 2

1 A
2 B C
3 D E
4 F G
5 H I
6 J

Task 2.1 (5%). Give the assignment of pebbles to nodes for each time step in a 2-DFS
traversal of the graph in figure 2.

Task 2.2 (5%). Give the assignment of pebbles to nodes for each time step in a 2-BFS
traversal of the graph in figure 2.

4



3 Benign Effects

One reason to use mutation is to write a program that behaves deterministically, like a
functional program, in a more convenient way. For example, mutation can be used to let
different parts of your program talk to each other, without explicitly passing the relevant
data around. This technique should be used with care: it is sometimes easier to write, but
often harder to read. One good use of it is for debugging code: you want to write debugging
code as easily as possible, without changing the structure of the main program, and it’s not
very important that it is readable, because it might not even stay in the final version of the
code.

In this problem, we will use the MiniMax algorithm as an example. To debug game tree
search algorithms, it is helpful to know how many terminal nodes of the game tree are visited.
For GAME, we define a terminal state to be one in which status returns Over or estimate

gets called (i.e. the non-recursive cases of MiniMax). As you saw in the previous homework,
this number is different for different pruning strategies, like αβ-pruning and Jamboree.

In the file minimax-counting.sml, we have included two functors, MiniMaxCount1 and
MiniMaxCount2. Each of them contains a function

next_move : Game.state -> Game.move * int

that returns both the move computed by the MiniMax algorithm and the number of terminal
states that are visited. Both of these implementations use a ref named terminals to store
the count, to avoid modifying search and evaluate to pass around the count explicitly.

Parallelism in MiniMax Suppose that the call to Seq.map in search is executed in
parallel (i.e. the cost graph for Seq.map is what we discussed in the lecture on sequences).

Task 3.1 (5%). Explain why the integer returned by MiniMaxCount1.next_move is depen-
dent on the schedule. (The same explanation should apply to MiniMaxCount2.next_move.)

Multiple Calls to MiniMax For the remainder of this problem, we assume that all of
the calls to sequence operations inside both versions of next_move are executed sequentially.
E.g. when evaluating Seq.map f <x1,x2,...xn>, f x1 is evaluated first, then f x2, and so
on.

Suppose we apply the above functors to make two players for a particular game:

structure MMC1 = MiniMaxCount1(struct structure G = Con4 val search_depth = 5)

structure MMC2 = MiniMaxCount2(struct structure G = Con4 val search_depth = 5)

Now, suppose some client is going to make multiple calls to MMC1.next_move and MMC2.next_move—
e.g. for playing multiple turns of one game of Connect 4, or for playing multiple instances
of Connect 4 at once.

Recall from Lecture 28 that

5



• next_move is benign in sequential contexts if, for any state s, any two sequential exe-
cutions of next_move s return the same move and count. This says that, when used
in a sequential program, next_move behaves like a functional program.

• next_move is benign in parallel contexts if, for any state s, any two parallel executions
of next_move s return the same move and count. This says that, when used in a
parallel program, next_move behaves like a functional program—next_move s returns
the same result no matter what else is running at the same time, including other
instances of next_move.

Task 3.2 (4%). Is MMC1.next_move benign in sequential contexts? Briefly explain why or
why not.

Task 3.3 (4%). Is MMC1.next_move benign in parallel contexts? Briefly explain why or why
not.

Task 3.4 (4%). Is MMC2.next_move benign in sequential contexts? Briefly explain why or
why not.

Task 3.5 (4%). Is MMC2.next_move benign in parallel contexts? Briefly explain why or why
not.

6



4 This task was reversed twice

Recall the two versions of reverse from Lecture 5:

fun rev (l : ’a list) : ’a list =

case l of

[] => []

| x :: xs => (rev xs) @ [x]

fun rev2 (l : ’a list) : ’a list =

let

fun revTwoPiles (l : ’a list, r : ’a list) : ’a list =

case l of

[] => r

| (x :: xs) => revTwoPiles(xs , x :: r)

in

revTwoPiles(l , [])

end

Both reverse their argument, but rev2 takes linear time whereas rev is quadratic. In this
task, you will prove that they are equivalent. More formally, you will prove:

Theorem 1. For all values l : ′a list, rev l ∼= rev2 l.

You should assume that @ is implemented with the following code fragment:

infix @

fun (l1 : ’a list) @ (l2 : ’a list) : ’a list =

case l1

of [] => l2

| x::xs => x::(xs @ l2)

You may assume the following lemmas without proof, but you must carefully cite them when
you use them.

Lemma 1 (Append is a monoid).

1. For all valuable l1:’a list, l2:’a list, l3:’a list,

(l1 @ l2) @ l3 ∼= l1 @ (l2 @ l3)

2. For all valuable l:’a list, [] @ l ∼= l

3. For all valuable l:’a list, l @ [] ∼= l

Lemma 2. @ total, rev total, revTwoPiles total

7



If you try to prove Theorem 1, you will quickly realize that you need a lemma about
revTwoPiles. In this problem, you will have to come up with this lemma on your own and
prove it.

Task 4.1 (18%). State and prove a lemma about revTwoPiles.1

Task 4.2 (4%). Prove Theorem 1 using your lemma.2

1 Hint: If your proof of the lemma is messy or impossible, consider changing your lemma!
2 Hint: This proof should be almost immediate from your lemma. If it isn’t, consider changing your

lemma!

8



5 Memoization

5.1 Introduction

In the absence of effects, a function will always evaluate to the same value when applied to
the same arguments. Therefore, applying a particular function to the same arguments more
than once will often result in needless work. Memoization is a simple optimization that helps
to avoid this inefficiency.

The idea is that you equip a function with some data structure that maps the arguments
that the function has been called on to the results produced. Then, whenever the function
is applied to any arguments, you first check to see if it has been applied to those arguments
previously: if it has, the cached result is used instead of computing a new one; if it hasn’t,
the computation is actually performed and the result is cached before being returned.

If you think of a graph of a function as a set of (input, output) pairs, rather than a doodle
on a piece of paper representing such a set, this mapping is really storing the subset of the
graph of its associated function that has been revealed so far. The optimization should
let us compute each (input, output) pair in the graph exactly once and refer to the already
discovered graph for inputs we need more than once.

5.2 Case Study: Fibonacci

We will work through implementing this idea using the familiar Fibonacci function as a case
study. Recall the näıve implementation of the Fibonacci sequence, provided in memo.sml:3

signature FIBO =

sig

(* on input n, computes the nth Fibonacci number *)

val fib : IntInf.int -> IntInf.int

end

structure Fibo : FIBO =

struct

fun fib (n : IntInf.int) : IntInf.int =

case n

of 0 => 0

| 1 => 1

| _ => fib(n-2) + fib(n-1)

end

3Note that this code uses the built in SML/NJ type for very large integers, IntInf.int. This will let
you run both this version of Fibonacci and the memoized versions you’ll write in the next two tasks on very
large input. The memoized version you write in 3.1 should be able to compute the thousandth Fibonacci
number in a couple of seconds, for instance.

9



Task 5.1 (10%). Finish the MemoedFibo functor in memo.sml by writing a memoized version
of Fibonacci.

You should represent the (input, output) mapping using a reference containing a per-
sistent dictionary of type D.dict, where D is the argument to MemoedFibo. The mapping
should be shared between all calls to MemoedFibo.fib, so that results are resued between
multiple top-level calls.

If you don’t know where to start, one good strategy is to use a pair of mutually recursive
functions: make one function in the pair the fib function required by the signature; make
the other function responsible for checking and updating the mapping. The benefit to this
strategy is that it lets you separate memoizing from the function being memoized.

Task 5.2 (5%). Instead of hand-rolling a new version of every function that we’d like
to memoize, it would be nice to have a higher order function that produces a memoized
version of any function. A totally reasonable—but wrong—first attempt at writing such an
automatic memoizer is shown in Figure 3.

What is wrong with this code? For example, apply the functor and use it to memoize an
implementation of Fibonacci. You should observe that it is much slower than the hand-rolled
version you wrote. Why?

Task 5.3 (15%). Finish the Memoizer functor in memo.sml by writing an automatic memo-
izer that doesn’t have the problems of the PoorMemoizer.

Notice that Memoizer ascribes to a different signature than PoorMemoizer. Functions
that can be memoized by Memoizer take a new argument: rather than having type

D.Key.t -> ’a

they have type

(D.Key.t -> ’a) -> (D.Key.t -> ’a)

When implementing Memoizer, assume that any function you memoize uses this new first
argument instead of directly calling itself recursively.

Task 5.4 (5%). Finish the structure AutoMemoedFibo ascribing to FIBO using your Memoizer
functor. This will let you test your Memoizer structure to make sure that you solved the
problem. The Fibonacci implementation produced by your Memoizer function should be
very nearly as fast as the hand-rolled version in MemoedFibo.

Task 5.5 (2%). What happens if you use Memoizer to memoize a function that has effects?
In particular, what happens if you memoize a function that prints things?

5.3 Application: Genome Sequencing

The speed up effected by memoizing can be huge. A good practical example can be found
in genetics: in sequencing a genome, one needs to find the longest common subsequence

10



between two sequences to get a rough idea of the amount of shared information between
them. For example, a longest common subsequence of AGATT and AGTCCAGT is AGTT; AGAT is
another.

More formally, a list l is a subsequence of l′ iff l can be obtained by deleting some elements
of l′:

• [] is a subsequence of l for any l.

• x::xs is a subsequence of y::ys iff either x::xs is a subsequence of ys (delete y) or
x = y and xs is a subsequence of ys (use y to match x).

Given two lists l1 and l2, a list l is a longest common subsequence of l1 and l2 iff l is a
subsequence of l1 and l is a subsequence of l2 and l is at least as long as any other subsequence
of both l1 and l2.

If DNA base-pairs are represented by the type Base.t, and DNA strands by the type
Base.t list, a very straight forward program to find such longest common subsequences is

fun lcs (s1 : Base.t list, s2 : Base.t list) : Base.t list =

case (s1, s2)

of ([], _) => []

| (_, []) => []

| (x :: xs, y :: ys) =>

case Base.eq (x, y)

of true => x :: lcs (xs, ys)

| false => Base.longerDnaOf (lcs (s1, ys),lcs (xs, s2))

It’s pretty clear that this program takes exponential time to run. It’s somewhat less
clear, though, that it’s also duplicating a good deal of work. For example, to find the longest
subsequence of (x1::xs, y1::ys), we might have to look at (x1::xs, ys) and (xs, y1::ys).
Both of these likely contain (xs, ys) as a subproblem.

Task 5.6 (5%). Use the Memoizer functor you’ve defined above to build a version of lcs

that avoids computing subproblems more than once. Put this version in the structure
AutoMemoedLCS in memo.sml. The code for the original implementation can be found in
dna.sml.

Task 5.7 (5%). In the SpeedExampleLCS structure, include an example input called speedExample

that demonstrates the speed up gained from memoizing. The original lcs function should
take a while to run on this input, but your memoized version should terminate almost im-
mediately.

5.4 Foreshadowing

The above uses of memoization are instances of a larger technique called dynamic program-
ming; you’ll learn more about it in 15-210. The key idea is to find problems that do a lot

11



of redundant work and use space to cache that work and save time. The näıve Fibonacci
implementation and LCS implementation both take exponential time; when memoized, both
take polynomial time.

12



A

B C

D E F G

H I J

K L M

N O P

Q R

S

Figure 2: Graph for Tasks 2.1 and 2.2

13



functor PoorMemoizer (D : DICT) : POORMEMOIZER =

struct

structure D = D

fun memo (f : D.Key.t -> ’a) : D.Key.t -> ’a =

let

val hist : ’a D.dict ref = ref D.empty

fun f_memoed x =

case D.lookup (!hist) x

of SOME(b) => b

| NONE =>

let

val res = f x

val _ = (hist := D.insert (!hist) (x,res))

in

res

end

in

f_memoed

end

end

Figure 3: A Poor Memoizer

14


	Introduction
	Getting The Homework Assignment
	Submitting The Homework Assignment
	Methodology
	Style
	Due Date
	The SML/NJ Build System

	Pebbling
	Benign Effects
	This task was reversed twice
	Memoization
	Introduction
	Case Study: Fibonacci
	Application: Genome Sequencing
	Foreshadowing


