
15-150 Spring 2012
Homework 09

Out: 10 April, 2012
Due: 25 April, 2012, 09:00am

1 Introduction

In this homework you will write a game and a game player using the techniques you have
been learning in class. There are two major parts: writing the representation of the game,
and writing a parallel version of the popular alpha-beta pruning algorithm. This will also
continue to test your ability to use and understand the module system.

1.1 Getting The Homework Assignment

The starter files for the homework assignment have been distributed through our git repos-
itory as usual.

1.2 Submitting The Homework Assignment

To submit your solutions, place your modified las.sml, connect4.sml, runconnect4.sml,
alphabeta.sml, and jamboree.sml files in your handin directory on AFS:

/afs/andrew.cmu.edu/course/15/150/handin/<yourandrewid>/hw09/

Your files must be named exactly: las.sml, connect4.sml, runconnect4.sml, alphabeta.sml,
and jamboree.sml. After you place your files in this directory, run the check script located
at

/afs/andrew.cmu.edu/course/15/150/bin/check/09/check.pl

then fix any and all errors it reports.
Remember that the check script is not a grading script—a timely submission that passes

the check script will be graded, but will not necessarily receive full credit.
Your las.sml, connect4.sml, runconnect4.sml, alphabeta.sml, and jamboree.sml

files must contain all the code that you want to have graded for this assignment and compile
cleanly. If you have a function that happens to be named the same as one of the required
functions but does not have the required type, it will not be graded. Modules must ascribe
to the specified signatures or they will not be graded.

1

1.3 Methodology

You must include types and purposes for every function you write on this assignment. How-
ever, this is a larger project, and can be tested in different ways: in addition to writing
tests for each function, you can play your game, and test your game tree search on the small
example games we have provided. Thus, we will grade you only on the correctness of your
code, and not allocate any points directly to testing. Of course, it is still essential that you
test your code: in a project this big, you will have bugs!

1.4 Style

We will continue grading this assignment based on the style of your submission as well as its
correctness. Please consult course staff, your previously graded homeworks, or the published
style guide as questions about style arise.

1.5 Due Date

This assignment is due on 25 April, 2012, 09:00am. Remember that this deadline is final
and that we do not accept late submissions.

1.6 The SML/NJ Build System

The support code for this assignment includes a substantial amount of starter code dis-
tributed over several files. The compilation of this is again orchestrated by CM through the
file sources.cm. Instructions on how to use CM can be found in the previous homework
handout.

2

2 Views

For this problem, you will want to use the list view for sequences. The SEQUENCE signature
contains the following components, which we have not talked about until now:

signature SEQUENCE =

sig

...

datatype ’a lview = Nil | Cons of ’a * ’a seq

val showl : ’a seq -> ’a lview

val hidel : ’a lview -> ’a seq

(* invariant: showl (hidel v) ==> v *)

end

See the Lecture 22-23 notes for an introduction to views.
You will use list views to implement a slight variant of the look and say operation from

homework 3 on sequences. As specified on that homework, the look and say function trans-
forms an int list into the int list that results from “saying” the numbers in the sequence
such that runs of the same number are combined. We will generalize this by transforming
an ’a Seq.seq into an (int * ’a) Seq.seq with one pair for each run in the argument
sequence. The int indicates the length of the run, and the value of type ’a is the value
repeated in the run. In order to test arguments for equality, look and say takes a function
argument of type ’a * ’a -> bool.

The following examples demonstrate the behavior of the function when given a function,
streq, that tests strings for equality:

look and say streq <"hi","hi","hi"> ==> <(3,"hi")>

look and say streq <"bye","hi","hi"> ==> <(1,"bye"), (2, "hi")>

Task 2.1 (10%). Use the list view of sequences to write the function

look and say : (’a * ’a -> bool) -> ’a Seq.seq -> (int * ’a) Seq.seq

in the LookAndSay structure in las.sml.

3

3 Connect 4

3.1 Description

Connect 4 is a strategy game played on a grid. Two players—Maxie (X) and Minnie (O)—
take turns dropping a piece into a column. The first player to have four markers in a row,
either horizontally, vertically, or diagonally wins. The choice of board size is somewhat
arbitrary, so your implementation will be parameterized over the board size, but will always
use four pieces in a row as the winning condition.

For example, Figure 1 shows a few example plays, starting from a board where Maxie
has a piece in column 2 and a piece in column 3, and Minnie has a piece in column 3 (on top
of Maxie’s) and a piece in column 4. Next, Maxie decides to make the move 0 (drop a piece
in column 0), which falls to the bottom of column 0. Maxie now has three in a row, and
can win by playing in column 1 if it is still free on Maxie’s next turn. But Minnie decides
to block, by playing in column 1.

3.2 Implementation

The support code for this homework contains the GAME code discussed in class (see the lecture
22/23 notes for more details). Part of an implementation of the GAME signature for Connect
4 is provided in games/connect4.sml. It uses the following representation of game states:

datatype position = Filled of player | Empty

(* (0,0) is bottom-left corner *)

datatype c4state = S of (position Matrix.matrix) * player

type state = c4state

type move = int (* cols are numbered 0 ... numcols-1 *)

A board is represented by a matrix. See the signature MATRIX (in matrix/matrix.sig)
for matrix operations—for example, the rows, cols, diags1, and diags2 functions may be
helpful. In particular, the bottom-left corner of the board thought of as the origin, so matrix
indices (x,y) can be thought of as x-y coordinates in the plane. E.g. in the following board:

0 1 2 3 4 5 6

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | |O| | | |

| | |X|X|O| | |

4

0 1 2 3 4 5 6

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | |O| | | |

| | |X|X|O| | |

Maxie, please type your move: 0

Maxie decides to make the move 0 in 3 seconds.

0 1 2 3 4 5 6

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | |O| | | |

|X| |X|X|O| | |

Minnie decides to make the move 1 in 0 seconds.

0 1 2 3 4 5 6

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | |O| | | |

|X|O|X|X|O| | |

Figure 1: A few plays of Connect 4

5

Minnie (O) has pieces in spaces (4, 0) and (3, 1). In the matrix, each position is either Filled
with a player’s piece, or Empty.

Task 3.1 (50%). Complete the implementation of the Connect4 functor in connect4.sml.
This takes a structure ascribing to the CONNECT4_BOARD_SPEC signature specifying the di-
mensions of the board.

Some advice:

• We have implemented most of the parsing and printing for you, but the move parser
relies on a function

lowestFreeRow : state -> int -> int option

where lowestFreeRow s i returns SOME(the index of the lowest free row in column
i)—i.e. the row a piece would fall into—or NONE if the column is full. You will want
to use this function elsewhere as well.

• We have provided some additional sequence operations that are helpful for this problem
in the structure SeqUtils, in sequtils.sml.

• You may find look_and_say helpful for your implementation of status.

• estimate is pretty open-ended. A very näıve estimator is to award some number of
points for each run of markers in a row; for instance, three in a row might be worth
64 points, two in a row 16, and so on. Runs for Maxie are awarded positive points,
whereas runs for Minnie are awarded negative points. If your estimator is at least
this smart, you will receive full credit.

A more sophisticated estimator might take the following things into account:

– whether or not a run can possibly lead to a win. E.g.

O X X X _

is better than

O X X X O

– how many ways a run can lead to a win. E.g.

_ X X X _

is even better!

– non-runs can be as good as runs. E.g. the following is also “three in a row”:

6

X _ X X

– how many moves it will take to complete a run, based on its height off the ground.

– the importance of blocking the other player’s moves

However, keep in mind that writing a clever estimator is for fun, and not required
for credit on this assignment. In particular, it’s more important for you to work on
αβ-pruning and Jamboree than to spend time improving your estimator.

3.3 Running Your Game

The file runconnect4.sml uses the Referee to construct a Connect 4 match, with Maxie as
a human player and Minnie as Minimax. Thus, you can run your game with:

- CM.make "sources.cm";

- C4_HvMM.go();

You can write other referee applications to test different variations on the game: different
board sizes, different search depths, different game tree search algorithms (such as αβ-
pruning and Jamboree below).

7

4 Alpha-Beta Pruning

In lecture, we implemented the minimax game tree search algorithm: each player chooses
the move that, assuming optimal play of both players, gives them the best possible score
(highest for Maxie, lowest for Minnie). This results in a relatively simple recursive algorithm,
which searches the entire game tree up to a fixed depth. However, it is possible to do better
than this!

Consider the following game tree:

a

b e

c[3] d[5] f [2] g

Maxie nodes are drawn as an upward-pointing triangle; Minnie nodes are drawn as a
downward-pointing triangle. Each node is labelled with a letter, for reference below. The
leaves, drawn as squares, are Maxie nodes and are also labelled with their values (e.g. given
by the estimator).

Let’s search for the best move from left to right, starting from the root a. If Maxie takes
the left move to b, then Maxie can achieve a value of 3 (because Minnie has only two choices,
node c with value 3 and node d with value 5). If Maxie takes the right move to e, then
Minnie can take the her left move to f , yielding a value of 2. But this is worse than what
Maxie can already achieve by going left at the top! So Maxie already knows to go left to b
rather than right to e. So, there is no reason to explore the tree g (which might be a big
tree and take a while to explore) to find out what Minnie’s value for e would actually be:
we already know that the value, whatever it is, will be less than or equal to 2, and this is
enough for Maxie not to take this path.

αβ-pruning is an improved search algorithm based on this observation. In αβ-pruning,
the tree g is pruned (not explored). This lets you explore more of the relevant parts of the
game tree in the same amount of time.

4.1 Setup

In αβ-pruning, we keep track of two values, representing the best (that is, highest for Maxie,
and lowest for Minnie) score that can be guaranteed for each player based on the parts of
the tree that have been explored so far. α is the highest guaranteed score for Maxie, and β
is the lowest guaranteed score for Minnie.

8

For each node, αβ-pruning computes a result, which is either a number (in particular,
Game.estimate), or one of two special messages, Pruned and ParentPrune:

• A result ParentPrune means “the parent of this node is not helpful to the grandparent
of this node”. In the above example, the result of f is ParentPrune, because the value
2 that the parent (Minnie) node can achieve is worse for the grandparent (Maxie) node
than what Maxie can already achieve by going left from a.

• A result Pruned means “this node should be ignored by the parent.” In the above
example, the result of e is Pruned, signalling that e is not helpful to a.

αβ-pruning labels each node in the game tree with a result, according to the following
spec:

Spec for αβ-pruning: Fix a search depth and estimation function, so that both
minimax and αβ-pruning are exploring a tree with the same leaves. Fix bounds
α and β such that such that α < β. Let MM be the minimax value of a node s.
Then the αβ-pruning result for that node, AB, satisfies the following:

• If α < MM < β then AB = MM .

• If MM ≤ α then

– AB = ParentPrune if s is a Maxie node

– AB = Pruned if s is a Minnie node

• If MM ≥ β then

– AB = Pruned if s is a Maxie node

– AB = ParentPrune if s is a Minnie node

Roughly, α is what we know Maxie can achieve, and β is what we know Minnie can
achieve. If the true minimax value of a node is between these bounds, then αβ-pruning
computes that value. If it is outside these bounds, then αβ-pruning signals this in one of
two ways, depending on which side the actual value falls on, and whose turn it is. Suppose
that it’s Maxie’s turn.

• If the actual minimax value is less than α, the node should be labeled ParentPrune,
which is an instruction to immediately label the parent Minnie node as Pruned, so that
the enclosing Maxie grandparent ignores it. The reason: this Maxie node’s value is
worse for Maxie than what we already know Maxie can achieve, so it gives the enclosing
Minnie node an option that Maxie doesn’t want it to have. So the Maxie grand-parent
should ignore this branch, independently of what the other siblings are. Node f in the
above tree is an example.

• If the actual minimax value is greater than β, the αβ-pruning value should be Pruned,
because the node is “too good”. This is because the value is better, for Maxie, than
what we already know Minnie can achieve, so Minnie won’t make choices that bolead
to this branch of the tree. Node d in the above tree is an example.

9

The labels for Minnie are dual.
Sometimes, no bounds on α and β are known (e.g., at the initial call, when you have

not yet explored any of the tree). To account for this, we let α range over things that are
either a number or are Pruned, where Pruned signals “no information”. Pruned is treated
as the smallest α, so max(Pruned, α) = α for any α (Pruned means “don’t use this node”,
so anything is better than it) and Pruned ≤ α (Pruned is no bound at all, so anything
is better than it). Dually, for β, we want Pruned to be the biggest β: Pruned ≥ β and
min(β, Pruned) = β.

4.2 The Algorithm

The above spec doesn’t entirely determine the algorithm (a trivial algorithm would be to
run minimax and then adjust the label at the end). The extra ingredient is how the values
of α and β are adjusted as the algorithm explores the tree. The key idea here is horizontal

propagation.
Consider the case where we want to compute the value of a parent node (so it is not a

leaf), given search bounds α and β based on the portion of the tree seen so far.

• To calculate the result for the parent node, you scan across the children of the node,
recursively calculating the result of each child from left to right, using the αβ for the
parent as the initial αβ for the first child. After considering each child:

– If the result of the child is ParentPrune, you stop and label the parent with
Prune, without considering the remaining children.

– Otherwise, you use the child’s value v to update the value of α or the value
of β used as the bound for the next child: If the parent is a Maxie node, you
update αnew = max(αold, v) (because α is what we know Maxie can achieve,
which can be improved by v). Dually, if the parent is a Minnie node, you update
βnew = min(βold, v) (because β is what we know Minnie can achieve, which can
be improved by v). Then you continue processing the remaining children using
the updated bounds.

• Once all children have been processed, the parent node is labeled using the final up-
dated α (for Maxie) or β (for Minnie) as a candidate value, which is treated as the
value MM in the . Spec for αβ-pruning: If the candidate value is within the bounds
αβ supplied for the parent node, then the node is labeled with the candidate value;
otherwise, it is labeled with Pruned/ParentPrune.

Note that, except via the returned value of a node, the updates to α and β made in
children do not affect the α and β for the parent node—they are based on different
information.

Leaves are labeled using the estimated/actual value as a candidate value, but again you
must do a bounds check and label with ParentPrune or Pruned if the Spec for αβ-pruning
requires it.

10

a

b n

c j o s

d g k p t w

e[3] f[5] h[2] i[7] l[10] m[4] q[2] r[7] u[8] v[2] x[4] y[6]

Figure 2: Extended αβ-pruning example

4.3 Extended Example

Figure 3 shows a trace of this algorithm running on the tree in Figure 2. As explained above,
we use Pruned in the initial call to represent “no bound for α/β.” The c − d − g subtree is
isomorphic to the above example tree, and shows how the algorithm runs on it. We start
evaluating c with no bounds, so we recursively look at d, and then e, still with no bounds.
The estimate for e is 3, which is trivially within the bounds, so the result of e is 3. Because d
is a Minnie node, we update β to be min(Pruned, 3), which is defined to be 3, for a recursive
call on f . Since the estimate of f is 5, which is greater than the given β (which is 3), and
it is a Maxie node, the result is Pruned, to signal that the enclosing Minnie node doesn’t
want this branch. Since the min of 3 and Pruned is still 3, the value of d is 3. Since c is a
Maxie node, we update α to be max(Pruned, 3), which is also 3. These bounds are passed
down to g and then h. Since the actual value of h is 2, which is less than the given α, and
it is a Maxie node, the value of h is ParentPrune: we know Maxie can get 3 in the left
tree, and this branch alone gives Minnie the ability to get 2 here, so Maxie doesn’t want
to take it. Thus, the value of g is Pruned, without even looking at i. Then we update α to
be min(3, Pruned), which is still 3. Since there are no other children, and since 3 is in the
original bounds for c, it is the value of c.

11

Searching state (Maxie,a) with ab=(Pruned,Pruned)

(* begin c-d-g sub tree *)

Evaluating state (Maxie,c) with ab=(Pruned,Pruned)

Evaluating state (Minnie,d) with ab=(Pruned,Pruned)

Evaluating state (Maxie,e) with ab=(Pruned,Pruned)

Result of (Maxie,e) is Guess:3

Evaluating state (Maxie,f) with ab=(Pruned,Guess:3)

Result of (Maxie,f) is Pruned

Result of (Minnie,d) is Guess:3

Evaluating state (Minnie,g) with ab=(Guess:3,Pruned)

Evaluating state (Maxie,h) with ab=(Guess:3,Pruned)

Result of (Maxie,h) is ParentPrune

Result of (Minnie,g) is Pruned

Result of (Maxie,c) is Guess:3

(* end c-d-g sub tree *)

Evaluating state (Maxie,j) with ab=(Pruned,Guess:3)

Evaluating state (Minnie,k) with ab=(Pruned,Guess:3)

Evaluating state (Maxie,l) with ab=(Pruned,Guess:3)

Result of (Maxie,l) is Pruned

Evaluating state (Maxie,m) with ab=(Pruned,Guess:3)

Result of (Maxie,m) is Pruned

Result of (Minnie,k) is ParentPrune

Result of (Maxie,j) is Pruned

Result of (Minnie,b) is Guess:3

Evaluating state (Minnie,n) with ab=(Guess:3,Pruned)

Evaluating state (Maxie,o) with ab=(Guess:3,Pruned)

Evaluating state (Minnie,p) with ab=(Guess:3,Pruned)

Evaluating state (Maxie,q) with ab=(Guess:3,Pruned)

Result of (Maxie,q) is ParentPrune

Result of (Minnie,p) is Pruned

Result of (Maxie,o) is ParentPrune

Result of (Minnie,n) is Pruned

Therefore value of (Maxie,a) is Guess:3, and best move is 0.

Terminals visited: 6

Figure 3: AB-Pruning trace for the above tree

12

4.4 Tasks

We have provided starter code in alphabeta.sml. As in minimax, we need to return not
just the value of a node, but the move that achieves that value, so that at the top we can
select the best move:

type edge = (Game.move * Game.est)

From the above discussion, you might expect

datatype result =

BestEdge of edge

| Pruned

| ParentPrune

for representing the various possible results of evaluating a node. However, it will be useful
to stage this into two datatypes:

datatype value =

BestEdge of edge

| Pruned

datatype result =

Value of value

| ParentPrune

This way, we can represent α and β by a value, with Pruned representing “no infor-
mation”. Because α and β are not results, the type system will force you to check for
ParentPrune in the appropriate place.

The reason we use the same value Pruned to mean both “this subtree was pruned” and
“no bound” (e.g. in the initial call) is that both meanings are consistent with the same
ordering on values.

For α, we order the type value with Pruned at the bottom, and BestEdge’s ordered
by the estimates in them. This order gives that max(Pruned, α) = α for any α (Pruned
means “don’t use this node”, so anything is better than it) and Pruned ≤ α (Pruned is
no bound at all, so anything is better than it). Dually, for β, we want Pruned ≥ β and
min(β, Pruned) = β, which means we think of Pruned as the top of value for β.

We have provided four functions:

alpha_is_less_than (alpha : value, v : Game.est) : bool

maxalpha : value * value -> value

beta_is_greater_than (v : Game.est, beta : value) : bool

minbeta : value * value -> value

13

that implement these orderings.
Also we abbreviate

type alphabeta = value * value (* invariant: alpha < beta *)

Task 4.1 (2%). Define the function

fun updateAB (s : Game.state) (ab : alphabeta) (v : value) : alphabeta = ...

that updates the appropriate one of ab with the new value v, which should be thought of as
the value of one of the children of state.

Task 4.2 (2%). Define the function

fun value_for (state : Game.state) (ab : alphabeta) : value = ...

that returns the appropriate one of ab for the player whose turn it is in state.

Task 4.3 (4%). Define the function

fun check_bounds ((alpha,beta) : alphabeta) (state : Game.state)

(incomingMove : Game.move) (e : Game.est) : result = ...

that takes a candidate value e (think of this as the MiniMax result MM) and returns the
appropriate result according to the above Spec for αβ-pruning. The incomingMove is
given because, when the value is in bounds, the result must be an edge, not just a number.

Task 4.4 (20%). Define the functions:

fun evaluate (depth : int) (ab : alphabeta) (s : Game.state)

(incomingMove : Game.move) : result = ...

and search (depth : int)

(ab : alphabeta)

(s : Game.state)

(moves : Game.move Seq.seq)= ...

search may assume the depth is non-zero, the state is In_play, and that moves is a sequence
of valid moves for s. search is responsible for evaluating the children of s given by the moves
in moves and returning the appropriate value for the parent s.1 Hint: don’t forget that
the incoming α/β must be included as a possibility for the output of search, to
get proper pruning. If your code is additionally visiting nodes u, v, x, y in the tree
in Figure 2, check for this bug.

1Note: We have not specified the result type for search: our solution uses value, but you are free to
make search return a result if this makes more sense to you.

14

evaluate checks the boundary conditions (depth is 0, game is over) and, if not, searches.
In any case, evaluate must ensure that the result it computes for s satisfies the above
Spec for αβ-pruning.

Task 4.5 (2%). Define next_move.

Task 4.6 (2%). In runconnect4.sml, use the Referee to define a structure C4_HvAB that
allows you to play Connect 4 against your αβ-pruning implementation.

Testing We have provided a functor ExplicitGame that makes a game from a given game
tree, along with two explicit games, HandoutSmall (Figure 4) and HandoutBig (Figure 3).
These can be used for testing as follows:

- structure TestBig =

AlphaBeta(struct structure G = HandoutBig val search_depth = 4 end);

- TestBig.next_move HandoutBig.start;

Estimating state e[3]

Estimating state f[5]

Estimating state h[2]

Estimating state l[10]

Estimating state m[4]

Estimating state q[2]

val it = 0 : HandoutBig.move

structure TestSmall =

AlphaBeta(struct structure G = HandoutSmall val search_depth = 2 end);

structure TestSmall : PLAYER?

- TestSmall.next_move HandoutSmall.start;

Estimating state c[3]

Estimating state d[6]

Estimating state e[~2]

Estimating state g[6]

Estimating state h[4]

Estimating state i[10]

Estimating state k[1]

val it = 1 : HandoutSmall.move

The search depths of 2 and 4 here are important, because an explicit game errors if it tries
to estimate in the wrong place.

For these explicit games, estimate prints the states it visits, so you can see what ter-
minals are visited, as indicated above. You may additionally wish to annotate your code so
that it prints out traces, as above.

15

5 Jamboree

αβ-pruning is entirely sequential, because you update α/β as you search across the children
of a node, which creates a dependency between children. On the other hand, MiniMax is
entirely parallel: you can evaluate each child in parallel, because there are no dependencies
between them. This is an example of a work-span tradeoff : MiniMax does more work, but
has a better span, whereas αβ-pruning does less work, but has a worse span.

The Jamboree algorithm manages this tradeoff by evaluating some of the children se-
quentially, updating α/β, and then the remainder in parallel, using the updated information.
Depending on the parallelism available in your execution environment, you can choose how
many children to do sequentially to prioritize work or span.

In the file jamboree.sml, you will implement a functor

functor Jamboree (Settings : sig

structure G : GAME

val search_depth : int

val prune_percentage : real

end) : PLAYER

prune_percentage is assumed to be a number between 0 and 1. For each node, prune_percentage
percent of the children are evaluated sequentially, updating αβ, and the remaining children
are evaluated in parallel. For example, with prune_percentage = 0, Jamboree specializes to
MiniMax, and with prune_percentage = 1, Jamboree specializes to completely sequential
αβ-pruning.

Suppose prune_percentage is 0.5. For the tree in Figure 2, Jamboree will explore the
tree in the same way as in Figure 3: no node has more than 2 children, so the restriction on
pruning never comes into play. However, on the following tree, the traces differ:

a

b f j

c[3] d[6] e[−2] g[6] h[4] i[10] k[1] l[30] m[9]

16

See Figure 4 for the traces.

5.1 Tasks

Task 5.1 Copy updateAB, value_for, and check_bounds from your αβ-pruning implemen-
tation, as these will be unchanged.

Task 5.2 (10%). Define the functions:

fun evaluate (depth : int) (ab : alphabeta) (s : Game.state)

(incomingMove : Game.move) : result = ...

and search (depth : int) (ab : alphabeta) (s : Game.state)

(abmoves : Game.move Seq.seq) (mmmoves : Game.move Seq.seq)

= ...

using the Jamboree algorithm.
The spec for evaluate is as above, except that when it calls search, it should divide

up the moves from s into abmoves and mmmoves. In particular, if s has n moves out of it,
abmoves should contain the first (floor (prune_percentage * n)) moves, and mmmoves

whatever is left over.
search should process abmoves sequentially, updating α/β as you go, as in your αβ-

pruning implementation. When there are no more abmoves, search should process mmmoves
in parallel, and combine the max/min of their values with the incoming α/β to produce the
appropriate value for s.

Task 5.3 (2%). Define next_move.

17

Jamboree with prune percentage = 0.5, so αβ are updated only after the first child (we round down):

Evaluating state (Minnie,b) with ab=(Pruned,Pruned)

Evaluating state (Maxie,c) with ab=(Pruned,Pruned)

Result of (Maxie,c) is Guess:3

Evaluating state (Maxie,d) with ab=(Pruned,Guess:3)

Result of (Maxie,d) is Pruned

Evaluating state (Maxie,e) with ab=(Pruned,Guess:3)

Result of (Maxie,e) is Guess:~2

Result of (Minnie,b) is Guess:~2

Evaluating state (Minnie,f) with ab=(Guess:~2,Pruned)

Evaluating state (Maxie,g) with ab=(Guess:~2,Pruned)

Result of (Maxie,g) is Guess:6

Evaluating state (Maxie,h) with ab=(Guess:~2,Guess:6)

Result of (Maxie,h) is Guess:4

Evaluating state (Maxie,i) with ab=(Guess:~2,Guess:6)

Result of (Maxie,i) is Pruned

Result of (Minnie,f) is Guess:4

Evaluating state (Minnie,j) with ab=(Guess:~2,Pruned)

Evaluating state (Maxie,k) with ab=(Guess:~2,Pruned)

Result of (Maxie,k) is Guess:1

Evaluating state (Maxie,l) with ab=(Guess:~2,Guess:1)

Result of (Maxie,l) is Pruned

Evaluating state (Maxie,m) with ab=(Guess:~2,Guess:1)

Result of (Maxie,m) is Pruned

Result of (Minnie,j) is Guess:1

Terminals visited: 9

Overall choice: move 1[middle]

αβ-pruning:

Evaluating state (Minnie,b) with ab=(Pruned,Pruned)

Evaluating state (Maxie,c) with ab=(Pruned,Pruned)

Result of (Maxie,c) is Guess:3

Evaluating state (Maxie,d) with ab=(Pruned,Guess:3)

Result of (Maxie,d) is Pruned

Evaluating state (Maxie,e) with ab=(Pruned,Guess:3)

Result of (Maxie,e) is Guess:~2

Result of (Minnie,b) is Guess:~2

Evaluating state (Minnie,f) with ab=(Guess:~2,Pruned)

Evaluating state (Maxie,g) with ab=(Guess:~2,Pruned)

Result of (Maxie,g) is Guess:6

Evaluating state (Maxie,h) with ab=(Guess:~2,Guess:6)

Result of (Maxie,h) is Guess:4

Evaluating state (Maxie,i) with ab=(Guess:~2,Guess:4)

Result of (Maxie,i) is Pruned

Result of (Minnie,f) is Guess:4

Evaluating state (Minnie,j) with ab=(Guess:4,Pruned)

Evaluating state (Maxie,k) with ab=(Guess:4,Pruned)

Result of (Maxie,k) is ParentPrune

Result of (Minnie,j) is Pruned

Terminals visited: 7

Overall choice: move 1[middle]

Figure 4: Traces for Tree 2
18

6 Extra Credit

6.1 PopOut

This extra credit task is in addition to, not in place of, the above. You will not
get credit for the above if you only hand in in the extra credit versions. Extra
credit will be taken into account when determining your final grade. This task will be worth
somewhere in the vacinity of 25 Homework points.

PopOut is a variation on Connect 4, with one additional move: a player can pop out one
of their own pieces from the bottom row, which shifts everything else in the column down.
E.g. in the state (note: not a board that will arise during play)

0 1 2 3 4 5 6

| | | | | | | |

| | | | | | | |

| | | | | | | |

|X| | | | | | |

|0|X|X|X| | | |

|X|0|X|X|O| | |

Maxie can pop out column 0 and win.

Task 6.1 In a file popout.sml, implement a functor

functor PopOut (Dim : CONNECT4_BOARD_SPEC) : GAME =

Be sure to include a comment at the top of the file describing the following:

1. What the input format is for a human player to enter a pop move.

2. How your estimator accounts for pops.

19

	Introduction
	Getting The Homework Assignment
	Submitting The Homework Assignment
	Methodology
	Style
	Due Date
	The SML/NJ Build System

	Views
	Connect 4
	Description
	Implementation
	Running Your Game

	Alpha-Beta Pruning
	Setup
	The Algorithm
	Extended Example
	Tasks

	Jamboree
	Tasks

	Extra Credit
	PopOut

