15-150 Spring 2012
Homework 08

Out: 3 April 2012
Due: 11 April 2012, 0900 EST

1 Introduction

This homework will introduce you to the SML module system. So far we’ve largely ignored
how code is grouped or organized, instead relying on careful namespace management. The
module system is a very powerful tool to associate pieces of code that work on the same
types into structures and produce new structures from old.

1.1 Getting The Homework Assignment

The starter files for the homework assignment have been distributed through our git repos-
itory as usual.

1.2 Submitting The Homework Assignment

To submit your solutions, place your hw08. pdf and modified bhrefactor.sml, fundict.sml,
and serializable.sml files in your handin directory on AFS:

/afs/andrew.cmu.edu/course/15/1560/handin/<yourandrewid>/hw08/

Your files must be named exactly: hw0O8.pdf, bhrefactor.sml, fundict.sml, and serializable.sml.
After you place your files in this directory, run the check script located at

/afs/andrew.cmu.edu/course/15/150/bin/check/08/check.pl

then fix any and all errors it reports.

Remember that the check script is not a grading script—a timely submission that passes
the check script will be graded, but will not necessarily receive full credit.

Also remember that your written solutions must be submitted in PDF format—we do
not accept MS Word files.

Your bhrefactor.sml, fundict.sml, and serializable.sml files must contain all the
code that you want to have graded for this assignment and compile cleanly. If you have
a function that happens to be named the same as one of the required functions but does
not have the required type, it will not be graded. Modules must ascribe to the specified
signatures or they will not be graded.



1.3 Methodology

You must use the four step methodology for writing functions for every function you write on
this assignment. In particular, you will lose points for omitting the purpose or tests (unless
otherwise specified) even if the implementation of the function is correct.

1.4 Style

We will continue grading this assignment based on the style of your submission as well as its
correctness. Please consult course staff, your previously graded homeworks, or the published
style guide as questions about style arise.

1.5 Due Date

This assignment is due on 11 April 2012, 0900 EST. Remember that this deadline is final
and that we do not accept late submissions.

1.6 The SML/NJ Build System

We will be using several SML files in this assignment. In order to avoid tedious and error-
prone sequences of use commands, the authors of the SML/NJ compiler wrote a program
that will load and compile programs whose file names are given in a text file. The structure
CM has a function

val make: string -> unit
make reads a file usually named sources.cm with the following form:

Group is

$/basis.sml
filel.sml
file2.sml
file3.sml

Loading your code using the REPL is simple. Launch SML in the directory containing your
work, and then:

$ sml

Standard ML of New Jersey v110.69 [built: Wed Apr 29 12:25:34 2009]
- CM.make "sources.cm";

[autoloading]

[library $smlnj/cm/cm.cm is stable]

[library $smlnj/internal/cm-sig-lib.cm is stable]



Simply call
CM.make "sources.cm";

at the REPL whenever you change your code instead of a use command like in previous
assignments. The compilation manager offers a better interface to the command line. There
is less typing and less of an issue with name shadowing between iterations of your code. In
short, on this assignment, the development cycle will be:

1. Edit your source files.

2. At the REPL, type
CM.make "sources.cm";

3. Fix errors and debug.

4. If done, consider doing 251 homework; else go to 1.

Be warned that CM.make will make a directory in the current working directory called .cm.
This is populated with metadata needed to work out compilation dependencies, but can
become quite large. The .cm directory can safely be deleted at the completion of this
assignment.

It’s sometimes the case that the metadata in the .cm directory gets in to an inconsistent
state—if you run CM.make with different versions of SML in the same directory, for example.
This often produces bizarre error messages. When that happens, it’s also safe to delete the
.cm directory and compile again from scratch.

1.6.1 Emphatic Warning

CM will not return cleanly if any of the files listed in the sources have no code in them.
Because we want you to learn how to write modules from, we have handed out a few files
that are empty except for a few place holder comments. That means that there are a few
files in the sources.cm we handed out that are commented out, so that when you first get
your tarball CM.make "sources.cm" will work cleanly.

You must uncomment these lines as you progress through the assignment!
If you forget, it will look like your code compiles cleanly even though it almost certainly
doesn’t.



2 Functorization

The Homework 7 support code included a signature SPACE, with two separate implementa-
tions using reals and rationals, in the modules RealPlane and RatPlane respectively. You
may have noticed that these two files contain many lines of duplicated code, due to the many
similarities between the two implementations of plane. Now that we know more about the
module system, we can use substructures and functors to clean up the SPACE implementations
by abstracting duplicated code into a functor.

In the Homework 8 code, the modules RealPlane (in realplane.sml) and RatPlane (in
ratplane.sml) contain lightly modified versions of the code from HW7. The two differences
are:

1. We have cut down the signature to a representative sample to make your task easier.

2. We have placed the scalar type and all of its associated operations in a Scalar
substructure abscribing to the signature SCALAR.

This is much better style than using a naming convention (s_plus, s_times, etc.) to separate
out the scalar operations—for example, you can change the naming convention by renaming
the module.

If you read through realplane.sml and ratplane.sml, you will see that much of the
code is copy-and-pasted from one file to the other. This is bad—for example, if you fix a
bug in one implementation, you have to remember to fix it in the other.

Your task in this problem is to reorganize this code to avoid this duplication. Overall,
your solution must have the following form:

e Define a functor MakePlane whose argument is all of the code that is different between
RealPlane and RatPlane, and whose body is all the code that the same in RealPlane
and RatPlane.

e Define arguments RealPlaneArg containing all the code specific to RealPlane, and
similarly for RatPlaneArg.

To make this work, you need to define a signature PLANE_ARGS that describes the differences,
for use as the argument type of MakePlane.

Note: most of this problem involves rearranging the existing code in RealPlane and
RatPlane into a different module structure, rather than writing new types and values. As
such, there are no methodology (purpose/test) points for this section.

Submit your answer to all of the below questions in the file bhrefactor.sml.

Task 2.1 (5%). Define the signature

signature PLANE_ARGS



which describes the types, functions, and structures that are different between the real
and rational implementations of the plane. You should carefully analyze RealPlane and
RatPlane to identify all of the implementation-specific code.

Task 2.2 (7%). Implement the functor
functor MakePlane (P : PLANE_ARGS) : SPACE

that defines a structure ascribing to SPACE. The argument P provides all the code that is
different between the two implementations; MakePlane should contain the code common to
both implementations.

Task 2.3 (6%). Implement the structures

structure RealPlaneArg : PLANE_ARGS
structure RatPlaneArg : PLANE_ARGS

which contain the code specific to the RealPlane and the RatPlane, respectively.
Task 2.4 (2%). Now, recreate the structures

structure RealPlane : SPACE
structure RatPlane : SPACE

by applying the functor you wrote.



3 Representation Independence

3.1 Motivation

One key advantage of abstract types is that they enable local reasoning about invariants:
if there is an invariant about the values of an abstract type—e.g. “this tree is a red-black
tree”—and all of the operations in a particular implementation of the signature specifying
that type preserve that invariant—e.g. “insert creates a RBT when given a RBT”—then
any client code using that implementation necessarily maintains the invariant. The reason
is that clients can only use the abstract type through the operations given the signature, so
if these operations preserve the invariant all client code must as well.

In this problem, we will investigate a related question, allowing us to reason about several
different implementations of the same abstract type. Specifically, we want to know:

When can you replace one implementation of a signature with another without
breaking any client code?

The answer is not as immediate as it may seem. Assuming all types in the signature are
abstract, swapping implementations will produce a program that still typechecks; it may or
may not, however, be correct.’

Informally, the answer is that you can swap implementations when they behave the same.
There is a theorem about SML called relational parametricity which justifies the following
formalization of this intuition:

One implementation of a signature can be replaced by another without breaking
any client code if and only if there exists a mathematical relation R between the
two implementations of the abstract type that is preserved by all the operations
in the signature.

3.1.1 Example: Sequences

For example, consider two modules implementing SEQUENCE: TreeSeq and ArraySeq. A
relation R between the two might relate an array and a tree if and only if the tree flattens
to the same list as the array—so the array

(o, 1, 2]
would be related to the trees
Node(Leaf 0, Node (Leaf 1, Leaf 2))

and

I'Many of you experienced this first-hand while working on the tests for Barnes-Hut: the real and rational
implementations of the plane ascribe to the same signatures, but have very different behaivours because
of precision loss. In this case, the differences were o severe enough that the same client code would often
produce different answers, or raise runtime errors and crash, depending on the implementation of the plane.



Node (Node(Leaf 0, Leaf 1), Leaf 2)

If we show that this relation is preserved by all of the operations in both implementations
of SEQUENCE—e.g. for map, if we show that

If R(t,a) then R(TreeSeq.map f ¢,ArraySeq.map [ a)

—then ArraySeq can be freely replaced with TreeSeq without changing the meaning of, or
breaking, any client code. The reason is that every computation performed inside TreeSeq
is mirrored inside ArraySeq in a way formalized by R.

3.2 Queues

Proving such a theorem for the whole SEQUENCE signature would be onerous and somewhat
outside the scope of this course. Instead, we’ll ask you to prove an analagous theorem for a
simple signature that formalizes the notion of queues of integers.

3.2.1 Signature

signature QUEUE=
sig

type queue

val emp : queue

val ins : int * queue —-> queue

val rem : queue -> (int * queue) option
end

In this signature,?

e emp represents the empty queue.
e ins adds an element to the back of a queue.

e rem removes the element at the front of the queue and returns it with the remainder
of the queue, or NONE if the queue is empty.

Taken together, these three values codify the familiar “first-in-first-out” behaviour of a queue.

3.2.2 Implementations

We have given two implementations of this signature in the file queues.sml.

2Provided in queues.sml.



LQ The first implementation represents a queue with a list where the first element of the list
is the front of the queue.

New elements are inserted by being appended to the end of the list. Elements are
removed by being pulled off the head of the list. If the list is empty, we know that the
queue is empty, so the removal fails.

This implementation is slow in that insertion is always a linear time operation—we
have to walk down the whole list each time we add a new element.

Note that we also could have chosen to have front of the queue be the last element of
the list, but then removal would be linear time and we’d have the same problem—we
can’t escape the fact that one of these operations will be constant time and the other
will be linear.

LLQ The second implementation represents a queue with a pair of lists. One list stores the
front of the queue, while the other list stores the back of the queue in reverse order.
The split between “front” and “back” here can be anywhere in the queue; it depends
on the sequence of operations that have been applied to the queue.

New elements are inserted by being put at the head of the reversed back of the queue.
Elements are removed in one of two ways:
1. If the front list is not empty, the front of the queue is its head, so we peel it off
and return it.
2. If the front list is empty,

3. If the front list is empty, we reverse the reversed back list—mow bringing it into
order—make that the new front list, take an empty list as the back list, and try
remove again on the pair of them.

If both the front and reversed back are empty, we know that the queue is empty, so
the removal fails.

If we assume that reverse is implemented efficiently, this implementation needs to
do a linear time operation on removal sometimes but not every time. Therefore, this
represents a substantial speed up in the average case over the one-list implementation.?

To get an intuition for how these implementations work consider the following actions
linked together in sequence, stated formally in queue_ex.sml:

(ins 1, ins 2, ins 3, rem, ins 4, rem, rem, rem, rem)

Figure 1 shows the internal state of each representation through this sequence.

3In particular, you can show that if you can reverse a list in linear time, the two-lists implementation has
amortized constant time insert and remove, while the one-list implementation will always have at least one
operation that’s always linear time. We won’t cover amortized analysis in this class, but it’s based on the
idea of “expensive things that don’t happen very often can be considered cheap.”
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Figure 1: Queue Example



3.2.3 Relation

The relation that shows these two implementations are interchangeable flattens the two-
lists representation into the one list representation. Formally, we define a relation between
valuable int 1lists and valuable pairs of int lists as

R(1:int list, (f,b):int list * int list) if (= fQ(revd)

and R respects equivalence in that if { = ', (f,b) = (f',V'), and R(1, (£,b)) then R(1’, (£’ ,b’)).
Showing that this relation is respected by both implementations for all the values in
QUEUE amounts to proving the following theorem:

Theorem 1.

(i.) The empty queues are related:

R(LQ.emp, LLQ. emp)

(ii.) Insertion preserves relatedness:

For all z:int, 1:4int list, f:int list, b:int list
If R(1, (f,b)), then R(LQ. ins(z,1),LLY. ins (z, (f,b)))

(iii.) On related queues, removal gives equal integers and related queues:

For all z:int, 1:int list, f:int list, b:int list, if R(1, (f, b)) then one of the
following s true:

(a) LQ.rem 1 = NONE and LLQ.rem (f,b) = NONE
(b) There exist z:int, y:int, 1’:int list, f’:int list, b’:int list, such that
i. LQ.rem 1 = SOME(z,1’)
1. LLQ.rem (f,b) = SOME(y, (f’,b’))
1. =y
w. R(1°, (f’,b7))
Task 3.1 (25%). Prove Theorem 1. Here are some guidelines, hints, and assumptions:

e Be sure to carefully state your assumptions and goals in each case, especially the two
cases where you're proving an implication.

e You may use the following lemmas without proof, but you must carefully cite all uses.

Lemma 1. For all 11:’a list, 12:’a list, 13:’a list,

(11 @ 12) @ 13= 11 @ (12 @ 13)

10



Lemma 2. For all 1:’a list, [] @ 1= 1

Lemma 3. Forall 1:’a list, 1 @ [] =1

Lemma 4. For all z:int, y:int, p:int list, g:int list,
ifxc::p = yriq, thenz = yand p = g

You may without proof that @, rev, and all of the functions in both structures are
total.

When you need to step through code, assume that @ and rev are given by*

infix @
fun (11 : ’a list) @ (12 : ’a list) : ’a list =
case 11
of [ => 12
| x::x8 => x::(xs @ 12)
fun rev (1 : ’a list) : ’a list=
case 1
of [1 =>[]

| x::xs => (rev xs) 0@ [x]

We can prove that any call to LLQ.rem results in at most one recursive call to LLQ. rem,
so you do not need induction to prove case (iii).

When proving an existentially quantified statement, remember to explicitly instantiate
each existentially quantified variable.

4This implementation of rev is not the fast reverse given by

foldl op:: []

or revTwoPiles from Lecture, but it is contextually equivalent to it. All you would need to go from a proof
of Theorem 1 for LLQ with this slow reverse to a proof for LLQ with fast reverse is a proof of their equivalence,
so we don’t really lose anything. The proof of Theorem 1 is substantially more straight-forward this way, so
it’s a nice assumption to make.

11



4 Dictionaries, Third Edition

The following signature slightly extends the notion of dictionaries we’ve seen in lecture and
in lab.”

signature DICT =

sig
structure Key : ORDERED
type ’v dict

val empty : ’v dict

val insert : ’v dict -> (Key.t * ’v) -> ’v dict

val lookup : ’v dict -> Key.t -> ’v option

val remove : ’v dict -> Key.t -> ’v dict

val map : (Pu -> ’v) -> ’u dict -> ’v dict

val filter : (’v -> bool) -> ’v dict -> ’v dict
end

The components of the signature have the following specifications:
e Key : ORDERED defines the ordering of the keys in the dictionary.

e ’v dict is an abstract type representing the type of the dictionary mapping keys of
type Key.t to values of type ’v.

e empty = ()

e insert (ky ~vy,...,ky ~vy,) (k,v)
~ ) (Bi~w, oo ki~ Ky ~vy)  if Key . compare (k, A;) = EQUAL for some i
| (b~ Ry~ gk~ ) otherwise

e lookup (ky ~vy,...,ky ~vy) k

1

SOME v; if Key.compare (k,k;) = EQUAL for some ¢
NONE otherwise

® remove ( .« ki—l ~ Vi_1, ]{Zz ~ V;, ki+1 ~ Uiy, - - ) k

~ ) Cokio ~ s ki ~ v, ) if Key.compare(k,k;) = EQUAL for some ¢
o ( NN ki—l ~ Vj_1, kz ~ Uy, ki—l—l ~ Vit1y - - ) otherwise

e map f (ky ~wvy, ... kyp~uvy) Z(ki~(fv1),. ., kn~(f vn))

This signature is provided in the file dict.sig.

12



o filter p (ky ~vy,...,k, ~ v,) is equivalent to the dictionary containing all and only
those k; ~ v; such that (p v}) = true.

Task 4.1 (20%). Write a functor FunDict in fundict.sml that takes a structure ascribing
to the ORDERED signature and yields a structure ascribing to the above DICT signature using
the following definition for the type ’v dict:

datatype ’v func = Func of (Key.t -> ’v option)

type ’v dict = ’v func

That is, we choose to represent a dictionary as a function from keys to value options which,
when applied to a key k, evaluates to SOME v iff k maps to v in the dictionary it represents.

The file dictclient.sml has some tests for the components of the FunDict functor. You
can type use "dictclient.sml" at the REPL after you call CM.make to run these tests.
Therefore, you do not need to write tests or examples for this section.

13



5 Serialization

5.1 Introduction

One common programming task is serialization: transforming data into a form where it
can be written out and later read back in. This is useful if you want data to persist across
different runs of your program by storing it in a file, or if you want to send data across a
network.® It’s easy to write a string to a file or to send a string over the network, so we
won’t take this problem any farther than producing a string from data and vica-versa.

In this problem, you will define a small serialization library, focused on capturing the
notion of data that can be serialized with the typeclass

signature SERIALIZABLE =

sig
type t
(* invariant: For all v, s: read (write v = s) == SOME (v , s) *)
val write : t -> string
val read : string -> (t * string) option

end

That is: a type t is serializable only if it supports read and write operations that convert
it to and from a string, which interact appropriately. “Appropriately” means that if you
read from a string whose prefix was constructed by write, then read returns the value that
was written, along with any suffix. More formally:

For all v:t and s:string, read (write v ~ s) = SOME (v, s)

For example, given S : SERIALIZABLE, if a web server sends a string produced by S.write v
to a browser, and then the browser calls S.read on that string, the spec says that the client
will recover the value the server intended. Note that this spec allows read to have aribtrary
behavior when applied to a string that does not have a prefix produced by write—e.g., we
assume that the string is not corrupted during transmission.

5.2 Utility Structure

To minimize the amount of tedious parsing code you need to write, we've provided an
implementation of the following signature in the handout code. Be sure to understand these
functions and use them when you can: they should make your code a lot cleaner.

6Check out http://en.wikipedia.org/wiki/Marshalling_(computer_science), http://en.
wikipedia.org/wiki/Serialization for a lot more information.
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This signature lives in util.sig. We have provided an implementation for you in
util.sml. You should understand the signature and freely use the functions the structure
ascribing to it provides, but you do not need to understand their implementation.”

signature UTIL =
sig
(* peelDff (s1,s2) == SOME s’ if s2 == sl "~ g’
== NONE otherwise

*
* Ex:

* peelOff ("a","a" == SOME("")
*  peelOff ("a","ab") == SOME("b")
* peelOff ("a","c") = NONE

*)

val peelOff : string * string -> string option

(* peelInt s == SOME (i,s’) if the longest non-empty prefix of s

comprised only of digits and #"™" parses as the
* integer i
* == NONE otherwise
*
* Ex:
x  peellnt "b5hello" == SOME(55,"hello")
*  peellnt "“5bhello" == SOME("55,"hello")
*  peellnt "-5bhello" == NONE
*  peellnt "hellobb" == NONE
*)
val peellnt : string -> (int * string) option

end

5.3 Serializing Booleans

Here is an example structure that demonstrates one of many possible ways to serialize the
type bool.®

structure SerializeBool : SERIALIZABLE =
struct
type t = bool

"This signature is provided in util.sig and implemented in a module Util ascribing to UTIL provided
in util.sml.

8This particular implementation is provided in serializebool.sml; you should feel free to experiment
with it to use it for testing.

15



fun write b =
case b
of true => "(TRUE)"
| false => "(FALSE)"

fun read s =
case Util.peelOff (" (TRUE)",s)
of SOME s => SOME (true,s)
| NONE =>
(case Util.peelOff (" (FALSE)",s)
of SOME s => SOME (false,s)
| NONE => NONE)
end

In write, we choose to serialize the value true as the string " (TRUE)" and the value false
as the string " (FALSE)".

To try to read back one of these values from a string s, we first try to peel off " (TRUE)"
from s. If that succeeds, we return the value true and whatever is left over; if it fails, we
try to peel off " (FALSE)". If this succeeds, return the value false and any leftovers. If this
fails, having now failed overall, we return NONE.

5.4 Integers, Pairs, and Lists—Oh, my!

Your task is to write serializers for integers, pairs, and lists.

5.4.1 One Possible Strategy

To serialize values of a type, consider how many constructors that type has and how many
arguments each of them takes. To keep track of the tree-structure of an expression, you will
need to be able to distinguish between constructors and between different instances of the
same constructor.

One way to do this is to represent a value constructed with the constructor con and
arguments Al through An as

(con A1 A2 ... An)
If you consider the type bool to be defined as
datatype bool = true | false

then this is exactly what we did above: the type is given by two nullary constructors and
nothing else.

16



5.4.2 Tasks

Submit your solutions for the following tasks in serializable.sml.

Task 5.1 (10%). Implement a structure SerializeInt that ascribes to SERIALIZABLE and
defines serialization for the type int.

Task 5.2 (10%). The signature

signature SERIALIZABLEPAIR =
sig
structure S1 : SERIALIZABLE
structure S2 : SERIALIZABLE
end

packages together two serializable modules.” Implement a functor
functor SerializePair (P : SERIALIZABLEPAIR) : SERIALIZABLE

that implements serialization for the type P.S1.t * P.S2.t. You may assume that P.S1
and P.S2 both obey the above invariant, but you may not make any other assumptions about
them.

Task 5.3 (10%). Implement a functor
functor SerializelList (S : SERIALIZABLE) : SERIALIZABLE

that defines serialization for the type S.t 1list. You may assume that S obeys the serial-
ization invariant above, but you may not assume anything else about S.

Task 5.4 (5%). Define serialization instances for the following types using only the modules
above.

1. int list list with a structure named ILL ascribing to SERIALIZABLE.
2. (int list) * bool with a structure named ILSB ascribing to SERIALIZABLE.
3. (int * bool) list with a structure named ISBL ascribing to SERIALIZABLE.

4. (int * (bool list)) list with a structure named ISBLL ascribing to SERTALIZABLE.

Task 5.5 (Extra Credit).Write a structure SerializeString ascribing to SERIALIZABLE
that defines serialization for the type string. Hint:

9This signature is provided in serializablepair.sig.
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HI, THIS 1S

YOUR SON'S SCHOOL.
WERE HAVING SOME
COMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY -

2

WOhttp://xked. com/327/

DID YOU REALLY
INAME YOUR SON
Robert'); DROP
TABLE Studerts;-~ 7

<tz

~ OH.YES UTNE
BOBBY TABLES,
WE CALL HIM.

WELL, WE'VE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.
QI AND I HOPE
- YOUVE LEARNED
TO SANMIZE YOUR
DATABASE INPUTS.

10
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