
15-150 Spring 2012
Homework 07

Out: March 21, 2012
Due: April 4, 2012, 09:00

1 Introduction

In this homework, you will first get some practice using exceptions and doing analysis of
sequence code. In the main problem on the assignment, you will implement the Barnes-Hut
approximation algorithm for the n-body problem.

1.1 Getting The Homework Assignment

The starter files for the homework assignment have been distributed through our git repos-
itory as usual.

1.2 Submitting The Homework Assignment

To submit your solutions, place your hw07.pdf and modified exceptions.sml and barnes-hut.sml

files in your handin directory on AFS:

/afs/andrew.cmu.edu/course/15/150/handin/<yourandrewid>/hw07/

Your files must be named exactly hw07.pdf and exceptions.sml and barnes-hut.sml.
After you place your files in this directory, run the check script located at

/afs/andrew.cmu.edu/course/15/150/bin/check/07/check.pl

then fix any and all errors it reports.
Remember that the check script is not a grading script—a timely submission that passes

the check script will be graded, but will not necessarily receive full credit.
Also remember that your written solutions must be submitted in PDF format—we do

not accept MS Word files.
Your exceptions.sml and barnes-hut.sml files must contain all the code that you want

to have graded for this assignment and compile cleanly. If you have a function that happens
to be named the same as one of the required functions but does not have the required type,
it will not be graded.

1



1.3 Methodology

Unless otherwise specified, you must use the five step methodology for writing functions for
every function you write on this assignment. In particular, you will lose points for omitting
the purpose or tests even if the implementation of the function is correct.

1.4 Style

We will continue grading this assignment based on the style of your submission as well as its
correctness. Please consult course staff, your previously graded homeworks, or the published
style guide as questions about style arise.

1.5 Due Date

This assignment is due on April 4, 2012, 09:00. Barnes-Hut is a larger piece of code than
you have written thus far this semester; start early! Remember that this deadline is final
and that we do not accept late submissions.

2



2 Sequence Library

We have provided an implementation of a sequence library that provides the functions listed
below. This assignment will be phrased mostly in terms of these functions and types, rather
than the more familiar SML base types.

• Seq.length : ’a Seq.seq -> int

Seq.length s evaluates to the number of items in s.

• Seq.empty : unit -> ’a Seq.seq

Seq.empty () evaluates to the sequence of length zero.

• Seq.cons : ’a -> ’a Seq.seq -> ’a Seq.seq

If the length of xs is l, Seq.cons x xs evaluates to a sequence of length l+1 whose
first item is x and whose remaining l items are exactly the sequence xs.

• Seq.singleton : ’a -> ’a Seq.seq

Seq.singleton x evaluates to a sequence of length 1 where the only item is x.

• Seq.append : ’a Seq.seq -> ’a Seq.seq -> ’a Seq.seq

If s1 has length l1 and s2 has length l2, Seq.append evaluates to a sequence with
length l1 + l2 whose first l1 items are the sequence s1 and whose last l2 items are the
sequence s2.

• Seq.tabulate : (int -> ’a) -> int -> ’a Seq.seq

Seq.tabulate f n evaluates to a sequence s with length n where the ith item of s is
the result of evaluating (f i). Seq.tabulate f i raises Range if n is less than zero.

• Seq.nth : int -> ’a Seq.seq -> ’a

nth i s evaluates to the ith item in s. This is zero-indexed. Seq.nth i s will raise
Range if i is negative or greater than (Seq.length s)-1.

• Seq.filter : (’a -> bool) -> ’a Seq.seq -> ’a Seq.seq

Seq.filter p s returns the longest subsequence ss of s such that p evaluates to true

for every item in ss.1

• Seq.map : (’a -> ’b) -> ’a Seq.seq -> ’b Seq.seq

Seq.map f s maps f over the sequence s. That is to say, it evaluates to a sequence s’

such that s and s’ have the same length and the ith item in s’ is the result of applying
f to the ith item of s.

• Seq.reduce : ((’a * ’a) -> ’a) -> ’a -> ’a Seq.seq -> ’a

Seq.reduce c b s combines all of the items in s pairwise with c using b as the base
case. c must be associative, with b as its identity.

1Here we use the term “subsequence” to mean any subsequence of a sequence, not necessecarily one
whose elements are consecutive in the original sequence. For example, 〈〉, 〈3〉, and 〈2, 4〉 are subsequences of
〈1, 2, 3, 4〉.

3



• Seq.mapreduce : (’a -> ’b) -> ’b -> (’b * ’b -> ’b) -> ’a Seq.seq -> ’b

Seq.mapreduce l e n s is equivalent to Seq.reduce n e (Seq.map l s).

• Seq.toString : (’a -> string) -> ’a Seq.seq -> string

Seq.toString ts s evaluates to a string representation of s by using ts to convert
each item in s to a string.

• Seq.repeat : int -> a -> ’a Seq.seq

Seq.repeat n x evaluates to a sequence consisting of exactly n-many copies of x.

• Seq.flatten : ’a Seq.seq Seq.seq -> ’a Seq.seq

Seq.flatten ss is equivalent to reduce append (empty ()) ss

• Seq.zip : (’a Seq.seq * ’b Seq.seq) -> (’a * ’b) Seq.seq

Seq.zip (s1,s2) evaluates to a sequence whose nth item is the pair of the nth item
of s1 and the nth item of s2.

• Seq.split : int -> ’a Seq.seq -> ’a Seq.seq * ’a Seq.seq

If s has at least i elements, Seq.split i s evaluates to a pair of sequences (s1,s2)

where s1 has length i and append s1 s2 is the same as s. Otherwise it raises Range.

• Seq.take : int -> ’a Seq.seq -> ’a Seq.seq

Seq.take i s evaluates to the sequence containing exactly the first i elements of s if
0 ≤ i ≤ length s, and raises Range otherwise.

• Seq.drop : int -> ’a Seq.seq -> ’a Seq.seq

Seq.drop i s evaluates to the sequence containing all but the first i elements of s if
0 ≤ i ≤ length s, and raises Range otherwise.

4



3 Exceptions

On Homework 3, you wrote subset_sum_cert, which we have revised to use options here:

(* PURPOSE

*

* given a multiset and a target value,

* returns SOME (a submultiset whose members sum to the target value)

* if there is one, or NONE if not

*)

fun subset_sum_op (l : int list, s : int) : int list option =

case l

of [] => (case inteq (s, 0) of

true => SOME []

| false => NONE)

| x::xs => (case subset_sum_op (xs, s - x) of

SOME c1 => SOME (x::c1)

| NONE => subset_sum_op (xs, s))

Task 3.1 (10%). Rewrite this function to use an exception to signal that there is no subset
that sums to the target:

(* PURPOSE

*

* given a multiset and a target value,

* returns a submultiset whose members sum to the target value if there is one,

* or raises NoSubset if not

*

* E.g. subset_sum_exn ([2,3,2], 4) ==> [2,2]

* subset_sum_exn ([2,4,6], 7) raises NoSubset

*)

exception NoSubset

fun subset_sum_exn (l : int list, s : int) : int list = ...

You may not use subset_sum_op or any other helper functions.

5



Task 3.2 (10%). Rewrite this function to use an exception to return the certificate:

(* PURPOSE

*

* given a multiset and a target value,

* raises Certificate with a submultiset whose members sum to the target value,

* if there is one,

* or returns () if not

*

* E.g. subset_sum_exn2 ([2,3,2], 4) raises (Certificate [2,2])

* subset_sum_exn2 ([2,4,6], 7) ==> ()

*

*)

exception Certificate of int list

fun subset_sum_exn2 (l : int list, s : int) : unit = ...

You may not use subset_sum_op or subset_sum_exn or any other helper functions. See
Section 2 of the Lecture 15 notes for a similar use of exceptions.

6



4 Analysis

This problem asks you to analyze the running time of code that uses sequences; see Lecture
17 for the costs of the various sequence operations. See the analysis of count on page 8 of
the notes for an example of what we expect as an explanation in following tasks.

4.1 Append and Reverse

The following function is from the Lab 9 solutions:

fun myAppend (s1 : ’a Seq.seq, s2 : ’a Seq.seq) : ’a Seq.seq =

Seq.tabulate (fn i => (case i < Seq.length s1 of

true => Seq.nth i s1

| false => Seq.nth (i - (Seq.length s1)) s2))

(Seq.length s1 + Seq.length s2)

Task 4.1 (2%). Give a tight O-bound for the work of myAppend. Make sure you explicitly
state what quantities you are analyzing the work in terms of. Briefly explain why your
answer is correct.

Task 4.2 (2%). Give a tight O-bound for the span of myAppend. Make sure you explicitly
state what quantities you are analyzing the span in terms of. Briefly explain why your answer
is correct.

We implemented reverse using tabulate in Lecture 17, with O(n) work and O(1) span.
Here is an alternate implementation:

fun reverse’ (s : ’a Seq.seq) : ’a Seq.seq =

Seq.mapreduce (fn x => Seq.singleton x)

(Seq.empty())

(fn (x,y) => myAppend (y, x))

s

Seq.singleton and Seq.empty take constant time.

Task 4.3 (2%). Give a tight O-bound for the work of reverse’, in terms of the length of
s. Briefly explain why there is a discrepancy between this and the work of reverse.

Task 4.4 (2%). Give a tight O-bound for the span of reverse’, in terms of the length of
s. Briefly explain why there is a discrepancy between this and the span of reverse.

7



4.2 Stocks

Recall the stock market code from Lectures 10 and 17:

fun suffixes (s : ’a Seq.seq) : (’a Seq.seq) Seq.seq =

Seq.tabulate (fn x => Seq.drop (x + 1) s) (Seq.length s)

val maxS : int Seq.seq -> int = Seq.reduce Int.max minint

val maxAll : (int Seq.seq) Seq.seq -> int = maxS o Seq.map maxS

fun withSuffixes (t : int Seq.seq) : (int * int Seq.seq) Seq.seq =

Seq.zip (t, suffixes t)

val bestGain : int Seq.seq -> int =

maxAll

o (Seq.map (fn (buy,sells) => (Seq.map (fn sell => sell - buy) sells)))

o withSuffixes

Task 4.5 (3%). Give a tight O-bound for the work of suffixes s, in terms of the length
of s. Briefly explain why your answer is correct.

Task 4.6 (3%). Give a tight O-bound for the span of suffixes s, in terms of the length
of s. Briefly explain why your answer is correct.

Task 4.7 (2%). Give a tight O-bound for the work of withSuffixes s, in terms of the
length of s. Briefly explain why your answer is correct.

Task 4.8 (2%). Give a tight O-bound for the span of withSuffixes s, in terms of the
length of s. Briefly explain why your answer is correct.

Task 4.9 (3%). Give a tight O-bound for the work of

maxAll〈〈x11, . . . , x1k1〉, . . . , 〈x
n
1 , . . . , x

n
kn〉〉

(i.e. the ith inner sequence has length ki and the outer sequence of sequences has length n)
in terms of k1, . . . , kn and n. Briefly explain why your answer is correct.

Task 4.10 (3%). Give a tight O-bound for the span of

maxAll〈〈x11, . . . , x1k1〉, . . . , 〈x
n
1 , . . . , x

n
kn〉〉

in terms of k1, . . . , kn and n. Briefly explain why your answer is correct.

Task 4.11 (3%). Give a tight O-bound for the work of bestGain s, in terms of the length
of s. Briefly explain why your answer is correct.

Task 4.12 (3%). Give a tight O-bound for the span of bestGain s, in terms of the length
of s. Briefly explain why your answer is correct.

8



5 n-Body Simulations

5.1 Two Planes, One Simulation

5.1.1 Big Picture

The main portion of this programming assignment is modeling movements of bodies through
a universe represented by a two-dimensional Euclidian plane. To make this model, we must
pick an SML representation of points in the plane that allows us to meaningfully measure
the distance between points—that is to say, we must pick a way to measure the universe.

The obvious choice, and the one we made in lecture, is to say that a point in the plane
is a pair of real numbers, represented by a pair of values of type real. Values of type
real are relatively fast to compute with, come with many helpful functions because they
are built into SML, and work well with the visualizer we wrote. Critically, though, they are
a floating point precision approximation to real numbers—not actual real numbers in the
mathematical sense. In particular, addition and multiplication on values of type real are
not always associative, and multiplication does not always distribute over addition. This
means that you can do the same sequence of operations in two slightly different orders and
get drastically different results:

- 10E30 + (~10E30 + 1.0);

val it = 0.0 : real

- (10E30 + ~10E30) + 1.0;

val it = 1.0 : real

We saw as early as Homework 1 that this property makes testing programs that compute
with reals hard. Two completely correct implementations of a particular algorithm that
use slightly different associations will, in general, produce different results.

A less obvious representation is to say that a point in the plane is a pair of rational num-
bers. Rationals are not built into SML, but can be represented: we gave an implementation
of rationals in the type Rational.t from Homework 5. Values of type Rational.t actually
do represent mathematical rational numbers, so all the operations that should be associative
and distributive actually are. Critically, this means that the results produced by rational
arithmetic are easily testable: any correct implementation of an algorithm using values of
type Rational.t will produce the same output.

There is, however, a price to pay: computation involving values of type Rational.t is
typically very slow because the type is implemented with arbitrary precision integer arith-
metic. It’s so slow that you can’t use a simulation implemented using Rational.t to simu-
late anything very large or very interesting. More damningly, abstract mathematical rational
numbers don’t support Euclidian distance: if x and y are rational numbers, it is not neces-
sarily the case that √

x2 + y2

is a rational number. Another definition of distance—the so-called Manhattan Distance—
is an appropriate definition of distance mathematically speaking in that it makes pairs of
rationals into a metric space, but does not intuitively model the universe we know.

9



5.1.2 Avoiding A Choice

So we have two possible ways to represent points in space, each with benefits and drawbacks.
Instead of picking one over the other, we’ll use both as they suit us. The reason that this
is valid is that both pairs of rationals and pairs of reals form a mathematical object called
a metric space: if we only program using properties of metric spaces in general, it doesn’t
matter which particular metric space we choose when we run the code.

To that end, you will write your code for this assignment without committing to either
representation of points and using only functions that work on an abstract idea of points in
general.

For testing, we have included implementations of a plane built from both real and rational
points. This gives you two choices:

• If you want to run your code to see if your algorithm is correct: use the rational plane
and compare your output to ours. (Details in Section 5.5.1.)

• If you want to run your code, once you’ve decided that it’s correct, to see the results
of the simulation, or if you want to see how far off your code is: use the real plane and
pipe the output into the visualizer. (Details in section 5.4.3.)

Your grade for this assignment will factor in the behaviour of your code on both repre-
sentations of the plane. We will test that your implementation produces exactly the same
results as ours with rational points and also that it produces roughly the same results in the
real metric space. This means that your solution must not use operations specific to any
metric space and must cleanly compile with either.

5.2 The Plane

To make your code work with both implementations of the plane, you will write it in terms
of types named Plane.scalar, Plane.point, and Plane.vec, which represent numbers,
points, and vectors, respectively. We have provided two implementations of these types, one
with scalars implemented by reals and the normal Euclidean distance metric, and one with
scalars implemented by rationals and Manhattan distance.

The implementation of the plane using reals is in realplane.sml; the implementation
using rationals is ratplane.sml. The file space.sig lists all of the functions common to
both of these implementations of the plane, with comments describing their behavior. We
suggest you read the summary in space.sig first, and then read realplane.sml if you are
confused about what an operation does—the rationals implementation is a little harder to
read. We describe some of the operations in more detail here:

5.2.1 Scalars

The type Plane.scalar is equipped with the following functions:

• Plane.s plus : Plane.scalar * Plane.scalar -> Plane.scalar which computes
the sum of two scalars.

10



• Plane.s minus : Plane.scalar * Plane.scalar -> Plane.scalar which computes
the difference of two scalars.

• Plane.s times : Plane.scalar * Plane.scalar -> Plane.scalar which computes
the product of two scalars.

• Plane.s divide : Plane.scalar * Plane.scalar -> Plane.scalar which com-
putes the quotient of two scalars.

• Plane.s dist : Plane.scalar * Plane.scalar -> Plane.scalar * Plane.scalar

-> Plane.scalar which computes the distance between two pairs of scalars.

• Plane.s compare : Plane.scalar * Plane.scalar -> order which computes the
ordering between two scalars.

• Plane.s fromRatio : IntInf.int * IntInf.int -> Plane.scalar

Plane.s fromRatio (x,y) evaluates to the value of type Plane.scalar which repre-
sents x

y
.

• Plane.s toString : Plane.scalar -> string which computes a string represen-
tation of a scalar.

There are other helper functions in the file implemented in terms of these; see space.sig

for a description. By using only the above operations, your code will work with either
implementation of the plane.

5.2.2 Points and Vectors

In order to write our implementation of the Barnes-Hut algorithm, we need several opera-
tions on vectors and points in space, many of which we discussed in Lecture 18. The type
Plane.point is used to represent a point in space, and the type Plane.vec is used to rep-
resent vectors of velocity, acceleration, etc. Whatever the definition of Plane.scalar is, we
define the type of points and vectors as in lecture:

type Plane.point = Plane.scalar * Plane.scalar

type Plane.vec = Plane.scalar * Plane.scalar

This uses Plane.scalar for numbers. Here we give a brief description of some of the
functions you may need on this assignment:

• Plane.distance : Plane.point -> Plane.point -> Plane.scalar

Plane.distance p1 p2 evaluates to the distance between the points p1 and p2.

• Plane.midpoint : Plane.point -> Plane.point -> Plane.point

Plane.midpoint p1 p2 evaluates to the midpoint of the points p1 and p2.

11



• Plane.head : Plane.vec -> Plane.point

Plane.head v evaluates to the point that corresponds to the displacement of v from
the origin.

• Plane.sum : (’a -> Plane.vec) -> ’a Seq.seq -> Plane.vec

Plane.sum f s evaluates to the vector that corresponds to the sum of the sequence
of vectors that results from mapping f on s. Recall that we used this in lecture to
correspond to the mathematical notion of a sum of vectors, Σ.

5.3 Barnes-Hut

In lecture on Thurday, we will discuss how to solve the n-body problem in the näıve, quadratic
manner. The code for this is given in mechanics.sml and naiveNBody.sml. Recall that
the pieces of information we need about a body in space are its mass, location, and velocity.
This is represented by the type definition

type body = Plane.scalar * Plane.point * Plane.vec

The type body is used to represent the different bodies in the n-body simulation. Specifically,
in an expression (m, p, v) of type body, m is the mass of the body, p is its position, and v

is the vector representing its velocity.
The näıve, quadratic implementation of an n-body simulation is given by the function

accelerations : body Seq.seq -> Plane.vec Seq.seq

in naiveNBody.sml. This function transforms a sequence of bodies into a sequence in which
the element at position i represents the acceleration for the element at position i of the
sequence of bodies.

One of the vital helper functions for this is

accOn : body * body -> Plane.vec

found in mechanics.sml. Recall the specification is that accOn b1 b2 calculates the accel-
eration on b1 due to b2. Using this function, the calculation is fairly straightforward:

fun accelerations (bodies : body Seq.seq) : Plane.vec Seq.seq =

Seq.map (fn b1 => Plane.sum (fn b2 => accOn (b1, b2)) bodies) bodies

However, on large inputs, this implementation is accurate, but unacceptably slow for an
actual simulation. There are many different approximations that have been developed; the
one we will look at is called Barnes-Hut.

12



5.3.1 The algorithm

In short, Barnes-Hut groups bodies by quadrants (in the two-dimensional case) and uses a
threshold value θ to determine whether each individual body is “far enough” away from a
group of other bodies. If it is, it groups the other bodies into a big pseudobody and uses that
for the acceleration calculation instead of each individual body composing the pseudobody.
This results in a loss of accuracy, but a dramatic speedup in terms of runtime—while the old
algorithm had work in O(n2), this algorithm’s work is in O(n log n) if the threshold value is
well-chosen.

To calculate the effect of a pseudobody on another body, it is important to know the
total mass of all the bodies represented by the pseudobody and also their center of mass
or barycenter. Therefore, when we form a pseudobody, we will compute a tuple (m, c)

such that m : Plane.scalar is the total mass of the bodies and c : Plane.point is the
barycenter. To compute the barycenter, we compute a weighted average of the vectors
corresponding to the displacement of each body’s position from the origin. For example, if
the positions are given by the set {pi | i ∈ I} and the corresponding masses are given by the
set {mi | i ∈ I} then we compute the following vector2:

R =

∑
i∈I miri∑
i∈I mi

where ri is the vector corresponding to the displacement of position pi from the origin. The
barycenter is then the point that results from displacing the origin point by R.

Given the total mass and barycenter, we approximate the acceleration due to all the
bodies in the group as the acceleration due to a single body located at the barycenter with
mass equal to the total mass.

5.3.2 Computing the barycenter

We will begin by writing the barycenter function to compute the total mass and barycenter
of a sequence of pairs of masses and points.

Task 5.1 (10%). Write the function

barycenter : (Plane.scalar * Plane.point) Seq.seq

-> Plane.scalar * Plane.point

that computes the pair (m, c) where m is the total mass of the bodies in the sequence (i.e.,
the sum of the first components of the pairs) and c is the barycenter. You should use the
provided scale point function to compute a weighted vector from a mass and position. You
should also use the Plane.sum function.

2taken from Wikipedia

13



5.3.3 Grouping bodies

We still have not discussed exactly how to group bodies. There are many different ways
of doing so, but the most straightforward is by grouping things into quadrants (for the 2D
case). That is, starting at the center of the area, we divide the field into quadrants, then
recursively group the bodies in each quadrant, stopping when a region has either zero or one
body in it. This yields a tree-structured division of space. Unsurprisingly, we can represent
this tree structure as a datatype in SML.

datatype bhtree =

Empty

| Single of body

| Cell of (Plane.scalar * Plane.point) * BB.bbox * (bhtree Seq.seq)

Empty represents a region with no bodies in it. Single b represents a region with exactly
the body b in it. Cell ((m, c), bb, sq) is somewhat more complicated:

• m is the total mass of the bodies contained in the region.

• c is the barycenter of the bodies contained in the region.

• bb is the bounding box of the region. The type BB.bbox represents a rectangular region
in two-dimensional space. You will want to use the functions whose types and specs
are given in bbox.sig. These functions are implemented in bbox.sml.

• sq is the sequence of the four quadrants in the region. The invariant is that this
sequence is always of length four and that the four child bhtree’s are, in order, the
top-left, top-right, bottom-left, and bottom-right quadrants of the region, respectively.

As a first step in constructing this tree, we will write the quarters function to split a
bounding box into four equally sized quadrants.

Task 5.2 (10%). Write the function

quarters : BB.bbox -> BB.bbox Seq.seq

to compute a sequence of four bounding boxes that correspond to the top-left, top-right,
bottom-left, and bottom-right quadrants of the argument bounding box. You may find some
of the functions in bbox.sml helpful. In particular, note that the BB.vertices function
computes the sequence of the top-left, top-right, bottom-left, and bottom-right corners of a
bounding box.

Once we have the four quadrants, we need to partition the bodies between them. To do
this we will use the function

seqPartition : (’a -> int) -> ’a Seq.seq -> int -> ’a Seq.seq Seq.seq

14



The expression seqPartition f s n evaluates to a sequence of n sequences such that the
elements of the ith sequence are those elements of s which evaluated to i when supplied as
an argument to f.

Therefore, we need a function to supply as the first argument to seqPartition. This
function must determine the quadrant in which each point in a sequence should be placed.

Task 5.3 (10%). Write the function

firstMatch : BB.bbox Seq.seq -> Plane.point -> int

firstMatch s p should return the index of the first bounding box in s which contains p.
If p is not in any bounding box in s, the function should raise an exception (e.g., raise
Fail "Invariant violation"). You should use the function BB.contained to determine
if a point is contained in a bounding box.

Observe that supplying firstMatch applied to the sequence of four quadrants to seqPartition
enables the partitioning of the points in a bounding box we desire. The specification of
firstMatch entails that ties (i.e., points that are on the line dividing two quadrants) will
be broken in favor of the first of the two quadrants in the sequence.

5.3.4 Growing the tree

We now have the tools we need to compute a bhtree from a sequence of points and a
bounding box.

Task 5.4 (20%). Write the function

compute tree : body Seq.seq -> BB.bbox -> bhtree

such that compute tree s bb evaluates to T, where T is the tree decomposition of s in the
bounding box bb. Futhermore, we have the invariant that all of the bodies in s are within
the bounding box bb and that no two bodies in s occupy the same position (i.e., have equal
position components). Your implementation does not have to handle arguments that violate
these invariants. You must use Seq.map to compute the recursive calls in parallel!

Note: If a large set of bodies is partitioned into several subsets and the barycenter of each
subset is known, the barycenter of the whole set can be more efficiently computed as the
barycenter of the barycenters of the subsets. In this instance, the barycenter of the bodies in
a bounding box can be computed as the barycenter of the four quadrants’ barycenters. You
should use this observation to compute the barycenter in the recursive case of compute tree

by applying the barycenter function you wrote earlier to the sequence of the barycenters of
the quadrants given by the results of the recursive calls. You may find it helpful to write a
helper function center of mass : bhtree -> Plane.scalar * Plane.point to project
the relevant data from the sequence of recursive results.

15



5.3.5 Computing acceleration

Now that we can calculate the tree determined by a group of bodies, we can use it to
efficiently compute an approximation of the acceleration of all the bodies at this particular
timestep. This brings us back to the threshold value θ mentioned above.

The reason Barnes-Hut is more efficient than the näıve approach is that it does not
compute the exact acceleration—instead, it uses θ to determine exactly how precise to be.
Whenever your algorithm reaches a region with more than one body in it (that is, a Cell in
the tree), it checks to see if m

d
≤ θ (where m is the total mass of the region and d is the distance

from the body being checked to the region’s barycenter). If it is, then the region is treated
as one large body located at its barycenter (which we have conveniently already calculated!).
Otherwise, the region gets decomposed into quadrants and the respective accelerations from
the bodies in each quadrant are computed recursively, combined, and returned.

Task 5.5 (10%). Write the function

too far : Plane.point -> Plane.scalar * Plane.point -> Plane.scalar -> bool

such that given a point p, the mass and location (m,c) of a pseudobody, and a threshold
t, too far p (m,c) t evaluates to true if m

d
≤ θ and false otherwise. Recall that in this

equation, m refers to the mass of the pseudobody, d refers to the distance between the point
and the pseudobody, and θ corresponds to the threshold argument t. You may find the
function Plane.distance to be useful.

There is one more thing that we need to take into consideration. Keep in mind that if the
body whose accelerations we are computing is within the bounding box of the current region,
then we need to decompose the region into its quadrants so we do not accidentally treat the
body as affecting its own acceleration. Just because this is an approximation does not mean
that we can be sloppy! This check then subsumes the threshold check, which should then be
made only if the body does not inhabit the current region.

Task 5.6 (20%). Write the function

bh acceleration : bhtree -> Plane.scalar -> body -> vec

such that bh acceleration T threshold b computes the acceleration on b from the tree T

according to the algorithm described above. (Hint: The function accOnPoint in mechanics.sml

may be useful.) You should use Plane.sum to compute the recursive calls in parallel
and add the resulting accelerations!

The provided function barnes hut uses your compute tree and bh acceleration func-
tions to form the Barnes-Hut tree for a sequence of bodies and then use it to compute the
acceleration on each body in the sequence.

5.4 Running the Simulation

Now that you have written all of the important code, you can actually visualize an n-body
simulation with some of the infrastructure that we have given you!

16



5.4.1 Choosing a plane

To load your code using the floating point implementation of the plane, at the REPL issue
the command

- CM.make "sources-real.cm";

To load your code using the rational implementation of the plane, at the REPL issue the
command

- CM.make "sources-rational.cm";

CM.make uses the SMLNJ compilation manager to load many different files, including all
of our support code and the code that you write. Once you have done CM.make to compile
your code once, you can use "barnes-hut.sml" to re-load the file you are working on.
However, before generating transcripts, you should re-run CM.make to refresh the support
code that depends on your implementation. An alternative is to use CM.make each time you
want to load your code.

5.4.2 Choosing an acceleration function and generating a transcript

Once you have done the CM.make, you can use the functions Simulation.runPairwise and
Simulation.runBH, which simulate the n-body problem, using the näıve algorithm covered
in class and your implementation of the Barnes-Hut algorithm, respectively. These functions
create a file containing transcripts of the results of the simulation at each time step. Note
that the Barnes-Hut algorithm that you implement is not the same as the näıve quadratic
algorithm! The former is an approximation of the latter. Therefore, you should expect the
visualization of the output of your code to be roughly the same as the visualization of the
output of the näıve code, but the outputs themselves will not agree.

Simulation.runBH : Mechanics.body list -> Plane.scalar -> int -> string -> unit

Simulation.runPairwise : Mechanics.body list -> Plane.scalar -> int -> string -> unit

A call Simulation.runBH bodies dt niters filename simulates the system contain-
ing bodies for niters steps, with a time-step of dt seconds, and writes the transcript to
filename.

In addition, in the file solars.sml, we have provided you with data for the sun and the
planets of the solar system, which are useful for constructing test simulations.

For example (Note: This is different from the transcripts we provided.)

(* Simulates the earth-sun system for a year *)

Simulation.runBH Solars.solar system

(Plane.s fromInt 86400) (* seconds in a day *)

365 (* days in a year *)

"transcript.txt";

This produces a file transcript.txt in the current working directory. The values
Solars.sun, Solars.earth, and so on define the planets, and the simple solar systems
Solars.one_body and Solars.two_body may be helpful for testing.

17



5.4.3 Running the Visualizer

Once you have produced a transcript file, you can visualize it by navigating to

http://www.cs.cmu.edu/~15150/visualizer/

You can then load a transcript file in one of two ways: either dragging and dropping the
transcript file into the dashed box, or using the file browser to select the file manually. The
visualizer will only work with floating point transcripts! Once you select a transcript,
click ’Go!’ to run the visualizer.

In the visualization, objects are displayed as circles. Note that the scale of the display
will be chosen automatically so that all bodies are visible on-screen at all times. If one body
is very far away from the others at some step of the simulation, this can result in objects at
different positions appearing very close or even being indistinguishable in the visualization.

5.5 Testing

Barnes-Hut is more difficult to test than the previous homeworks, because the data structures
are more complex and examples are harder to write out by hand. We encourage you to test
your code using all of the following techniques:

• Run the visualizer! The existence of many bugs will be pretty easy (and funny) to
spot.

• Because your solution consists of several functions that build on each other, it is in your
interest to test each function in isolation, which will help you figure out where your
bugs are. For Tasks 5.1-5.4, we have provided some helper functions and some hard-
coded points/bounding boxes/bodies, along with suggestions about what we expect
for tests. You are of course welcome to write more tests than the suggestions describe,
but you will receive full testing points for following the suggestions.

• For the final Task 5.6, you should test your overall implementation by running on the
rational plane and diffing the output against ours, as described below. You do not
need to include hard-coded tests in your SML file. Running the visualization with the
output from the floating point scalars should give you a rough idea of if your code is
correct, but comparing with our output on the rational scalars will be more precise.

5.5.1 Testing with the Rational Plane Simulation

We have provided the output of our code built from the rational scalars on a few examples.
These are in the tests directory. The file tests/README.txt describes how each file was
created so that you can run the same command and compare the output. Note that some
of these tests will take a while to run: we tried to simulate the whole solar system with
rationals for three days but killed the job after a half an hour. You do not need to exactly
match the times above, but you shouldn’t be way off.

18



To do this, produce a transcript file after doing CM.make "sources-rational.cm" as
described above. Instead of giving this file to the visualizer, use the UNIX command diff

to compare it to the appropriate file in the tests directory. diff takes two file names
as arguments on the command line. For example, if you created a transcript file named
student.txt from simulating the whole solar system for one day, you would check to see if
it’s correct by doing

diff student.txt tests/sun-earth.1day.txt

If diff doesn’t make any output, as in

bovik@unix34 hw08 % diff student.txt tests/sun-earth.1day.txt

bovik@unix34 hw08 %

then the files are exactly the same and your code agrees with ours on that case. If diff does
produce output, as in

bovik@unix34 hw08 % diff student.txt tests/sun-earth.1day.txt

2c2

< (0, 0),(0, 57909100000),(0, ~108208930000),(0, ~149600000000),(0,

227939100000),(0, 778547200000),(0, ~1433449370000),(0, 2876679082000),(0,

~45)

---

> (0, 0),(0, 57909100000),(0, ~108208930000),(0, ~149600000000),(0,

227939100000),(0, 778547200000),(0, ~1433449370000),(0, 2876679082000),(0,

~4503443661000)

bovik@unix34 hw08 %

then your code does not agree with ours on that case.3

3diff is a robust and useful UNIX utility for comparing text; you can learn more about it starting at
http://en.wikipedia.org/wiki/Diff.

19

http://en.wikipedia.org/wiki/Diff

	Introduction
	Getting The Homework Assignment
	Submitting The Homework Assignment
	Methodology
	Style
	Due Date

	Sequence Library
	Exceptions
	Analysis
	Append and Reverse
	Stocks

	n-Body Simulations
	Two Planes, One Simulation
	Big Picture
	Avoiding A Choice

	The Plane
	Scalars
	Points and Vectors

	Barnes-Hut
	The algorithm
	Computing the barycenter
	Grouping bodies
	Growing the tree
	Computing acceleration

	Running the Simulation
	Choosing a plane
	Choosing an acceleration function and generating a transcript
	Running the Visualizer

	Testing
	Testing with the Rational Plane Simulation



