
15-150 Spring 2012
Homework 06

Out: Saturday, 25 February 2012
Due: Saturday, 3 March 2012, 23:59 EST

1 Introduction

This homework will focus on using higher order functions and continuations to solve inter-
esting problems elegantly. The assignment will also help you mesh writing code with proving
its correctness.

In Sections 3 and 4, you will investigate the idea that

Recursion templates can be represented by higher-order functions.

for several different recursive types. When you write out an instance of a template, you
repeat a lot of code. By abstracting repeated patterns into a higher-order function, you can
make your code shorter and easier to read and maintain.

In general, the problems on this assignment will be tricky but the solutions will not be
that long when you’re done.

1.1 Getting The Homework Assignment

The starter files for the homework assignment have been distributed through our git repos-
itory as usual.

1.2 Submitting The Homework Assignment

To submit your solutions, place your hw06.pdf and modified hw06.sml files in your handin
directory on AFS:

/afs/andrew.cmu.edu/course/15/150/handin/<yourandrewid>/hw06/

Your files must be named exactly hw06.pdf and hw06.sml. After you place your files in this
directory, run the check script located at

/afs/andrew.cmu.edu/course/15/150/bin/check/06/check.pl

1

then fix any and all errors it reports.
Remember that the check script is not a grading script—a timely submission that passes

the check script will be graded, but will not necessarily receive full credit.
Also remember that your written solutions must be submitted in PDF format—we do

not accept MS Word files.
Your hw06.sml file must contain all the code that you want to have graded for this

assignment and compile cleanly. If you have a function that happens to be named the same
as one of the required functions but does not have the required type, it will not be graded.

1.3 Methodology

You must use the five step methodology for writing functions for every function you write
on this assignment. In particular, you will lose points for omitting the purpose, examples,
or tests even if the implementation of the function is correct.

1.4 Style

We will continue grading this assignment based on the style of your submission as well as its
correctness. Please consult course staff, your previously graded homeworks, or the published
style guide as questions about style arise.

1.5 Due Date

This assignment is due on Saturday, 3 March 2012, 23:59 EST. Note that this is not the
normal day or time! Remember that this deadline is final and that we do not accept late
submissions.

1.6 Characters

The type char represents single characters. Here are some useful functions involving char-
acters:

String.explode : string -> char list

String.implode : char list -> string

Char.compare : char * char -> order

String.explode “blows up” a string into the list of characters in that string in order;
String.implode is the inverse. Char.compare orders character.

2

2 Regular Expressions

In class, we introduced six different operators to describe regular expressions:

• The empty set 0

• The empty string 1

• Characters c

• Concatenation r1r2

• Alternative r1 + r2

• Repetition r∗

From time to time it is helpful to have some more constructs available to form regular
expressions, such as

• A character wildcard symbol which accepts any one character:

L() = {“c” | c is a character }

• Intersection r1 & r2 which accepts a string if and only if it is simultaneously in both
L(r1) and in L(r2):

L(r1 & r2) = {s | s in L(r1) and s in L(r2)}

• A string wildcard T which accepts any string:

L(T) = {s | s is a string }

The regular expression matcher match from class is included in the support code for
the assignment. We have extended the datatype definition of regexp to include the new
constructors Wild, Both, and Any, which correspond to , &, and T, respectively. Your job
is to extend match to deal with these new constructors, and prove parts of the correctness
of your implementation. In the notes for Lecture 12, you will find the full statement of the
correctness theorem for match, including both soundness and completeness. Here we will
ask you to show cases of soundness:

Theorem 1 (Soundness). For all r : regexp, cs : char list, k : char list → bool, if
match r cs k ∼= true then there exist p, s such that p@s ∼= cs with p ∈ L(r) and k s ∼= true.

3

In each of the following coding tasks, we strongly recommend that you think through
the correctness spec when you are writing the code. If you’re stuck on the implementation,
try doing the proof of soundness and/or completeness—this will guide you to the answer.
However, we will only ask you to hand in soundness for each.

Task 2.1 (5%). Implement the case of match for the one-character wildcard , that is, Wild.

Task 2.2 (5%). Complete the following case of soundness:

Case for Wild:

To show: For all cs : char list and k : char list→ bool,
if match Wild cs k ∼= true

then ∃p, s such that p@s ∼= cs and p ∈ L() and k s ∼= true

Complete this case.

Task 2.3 (10%). Implement the case of match for intersection r1&r2, that is, Both(r1, r2).

Task 2.4 (10%). Complete the following case of soundness:

Case for Both(r1, r2):

To show: for all cs : char list and k : char list→ bool,
if match (Both(r1, r2)) cs k ∼= true then
∃p, s such that p@s ∼= cs and p ∈ L(Both(r1, r2)) and k s ∼= true

Complete this case.

Do this proof carefully! There is a plausible-looking, but incorrect, implemen-
tation of Both; this case of the proof will fail if your code has this bug.

Note: we will go over the code for Star in lecture on Tuesday; you may want to wait
until after then for the next two tasks.

As in the case with Star, the case for Any should use a helper function called matchany.
This function should do all the work of matching Any with the given continuation, k.

Task 2.5 (10%). Define the function matchany so that it evaluates to true if and only if there
is some suffix (possibly the whole list) of its argument that satisfies the given continuation.

To prove the soundness of the Any case, we will prove the following lemma about matchany
in the scope of a given continuation k:

Lemma 1. For all cs : char list, if matchany cs ∼= true then
∃p, s such that p@s ∼= cs with k s ∼= true.

Task 2.6 (10%). Prove Lemma 1 by structural induction on cs.

4

3 File Systems

3.1 Structural Recursion on Trees

As a first example, consider structural recursion on trees, as in size:

datatype ’a tree =

Leaf of ’a

| Empty

| Node of ’a tree * ’a tree

fun size (t : ’a tree) : int =

case t of

Leaf x => 1

| Empty => 0

| Node (l, r) => size l + size r

This pattern can be abstracted into a function mapreduce:

fun mapreduce (f : ’a -> ’b) (e : ’b) (n : ’b * ’b -> ’b) (t : ’a tree) : ’b =

case t of

Leaf x => f x

| Empty => e

| Node (l, r) => n (mapreduce f e n l, mapreduce f e n r)

mapreduce takes three arguments: f says what to do in the Leaf case, as a function of the
data stored at the leaf; e says what to do in the Empty case; n says how to combine the
recursive results in the Node case. It returns a function ’a tree -> ’b that applies this
process to the tree.

For example,1

fun size (t : ’a tree) : int = mapreduce (fn => 1) 0 (op+) t

The name mapreduce comes from the fact that

mapreduce f e n ∼= (reduce n e) o map f

for map and reduce defined in Lecture 10.

1Note that op allows an infix operator to be used as a function (+ by itself, without arguments or op,
doesn’t parse); op+ is equivalent to fn (x,y) => x + y.

5

3.2 Structural Recursion on a File System

In this section we will use the following simple representation of objects in a filesystem:

datatype fsobject =

File of string * int

| Dir of (string * fsobject) tree

A fsobject is either a file consisting of the contents and size of the file (represented by a
string and int, respectively) or a directory consisting of a collection of fsobject’s, each
paired with a name represented by a string. We represent this collection as a tree, so that
if a directory had lots and lots of entries in it, we could process them in parallel. Note that
individual Files do not have a name—the filename is part of the enclosing directory.

Analogous to reduce on trees and lists, we define fsreduce to operate on values of type
fsobject:

val fsreduce : ((string * int) -> ’a)

-> ((string * ’a) tree -> ’a)

-> (fsobject -> ’a)

Its first argument is a function that computes the result for a single file, from the file’s
contents and size. The second argument is a function that computes the result for a directory,
from a tree corresponding to the contents of a directory, where each recursive occurence of
an fsobject has been replaced by the result of a recursive call on it. The third argument is
just the fsobject itself. As an example of defining functions using fsreduce, we consider
the count rec function that computes the number of names (of both files and directories)
that satisfy the given predicate (i.e., function of type string → bool). The code is given
here for reference:

fun count_rec (match : string -> bool) (fso : fsobject) : int =

let val case_for_leaf = fn (name : string, subcount : int) =>

subcount + (case match name of true => 1 | false => 0)

in

case fso of

File _ => 0

| Dir t =>

let fun loop t =

case t of

Node (t1, t2) => loop t1 + loop t2

| Leaf (n, fso’) =>

case_for_leaf (n, count_rec match fso’)

| Empty => 0

in

loop t

end

end

6

This function definition exhibits a pattern of recurring over a fsobject that can be used
to define many functions. It defines the result for a single File (i.e., 0), and then defines
the result for a Dir with a recursive function that traverses the tree of fsobject’s in the
directory. For each Leaf of the tree, it performs some action on the name and the recursive
result of the function on the nested fsobject. These traversals of fsobject’s and tree’s
are represented more concisely using fsreduce and mapreduce in the following alternative
definition:

val count_reduce : (string -> bool) -> (fsobject -> int) =

fn match =>

let

val case_for_leaf = ... same as above ...

in

fsreduce (fn _ => 0) (mapreduce case_for_leaf 0 op+)

end

The File branch of the outer case in the recursive version corresponds to the first
function argument to fsreduce. The Leaf branch of loop corresponds to the first argu-
ment to mapreduce. The Empty branch of the loop corresponds to the second argument
to mapreduce. Finally, the Node branch of loop corresponds to the third argument to
mapreduce. Observe that we only partially apply mapreduce, so that the expression is of
type int tree → int. Similarly, we only partially apply fsreduce so the expression is of
type fsobject→ int.

There are a few really important benefits of rewriting code in this style:

1. It’s shorter (1 line instead of 11!).

2. It’s easier to read: much of reading code is about finding familiar patterns that you
understand, and using them to understand new code. In the first version, you have to
puzzle out the fact that the outer recursion defines an fsreduce and the inner loop

a mapreduce. The second version tells you what pattern it is using, which we can do
because the pattern is expressed as a higher-order function!

In the next two tasks we will ask you to take some other examples of recursive code,
extract the pattern of recursion, and express it using fsreduce with mapreduce.

3.3 du

We begin with the function totsize rec, which computes the total size of all files in the
given fsobject (cf. the unix command du). Here is the recursive version:

fun totsize_rec (fso : fsobject) : int =

case fso of

File (_, sz) => sz

7

| Dir t =>

let fun loop t =

case t of

Node (t1,t2) => loop t1 + loop t2

| Leaf (_ , fso’) => totsize_rec fso’

| Empty => 0

in

loop t

end

Task 3.1 (10%). Define the function

totsize_reduce : fsobject -> int

to compute the total size of all the files in the given fsobject using fsreduce with mapreduce.
The function definition should be no more than a couple lines.

3.4 grep

The unix command grep finds all files matching a given pattern, and prints their full paths
along with their contents. We model this by the following recursive function, all matches rec,
which computes a tree of all the names that match a given predicate along with their absolute
paths:

fun all_matches_rec (match : string -> bool) (fso : fsobject)

: (string * string) tree =

let

fun case_for_leaf (name : string, t’ : (string * string) tree)

: (string * string) tree =

let

val submatches =

treemap (fn (name’, path) => (name’, "/" ^ name ^ path)) t’

in

case match name of

true => Node (Leaf (name, "/" ^ name), submatches)

| false => submatches

end

in

case fso of

File _ => Empty

| Dir t =>

let fun loop t =

case t of

8

Node (t1, t2) => Node (loop t1, loop t2)

| Leaf (n, fso’) =>

case_for_leaf (n, all_matches_rec match fso’)

| Empty => Empty

in

loop t

end

end

Task 3.2 (10%). Define the function

all_matches_reduce : (string -> bool) -> fsobject -> (string * string) tree

to compute all the fsobject names that satisfy the given predicate along with the path
to the fsobject. You should still use the case for leaf function for the leaves of the
tree. Your code should be no more than a couple lines. You may wish to use your regular
expression matcher to construct predicates on names for test cases.

9

4 Patterns of Recursion On Lists

4.1 Structural Recursion on Lists

Recall the following two functions from Homework 5:

fun ap (l1 : ’a list, l2 : ’a list) : ’a list =

case l1

of [] => l2

| x::xs => x::ap(xs,l2)

fun concatap (l : ’a list list) : ’a list =

case l

of [] => []

| x::xs => ap(x,concatap(xs))

Both functions are structurally recursive, in that they have the form

fun f (l : ’a list) : ’b =

case l

of [] => <some expression e1>

| x::xs => <some expression e2 involving x and a recursive call on xs>

We can capture this pattern by lifting the e1 from the []-branch and the e2 from the
x::xs-branch to be arguments. This is a new higher order function called fold, which has
type

(α ∗ β → β)→ β → α list → β

The first argument is the function that we use to combine the elements with the recursive call;
the second argument is the result for when there are no more elements; the third argument
is the list to combine in this way.

We can implement fold by following the above pattern with some new arguments:

fun fold (f : ’a * ’b -> ’b) (b : ’b) (l : ’a list) : ’b =

case l

of [] => b

| x::xs => f(x, fold f b xs)

10

We can then use fold to implement the two functions above very simply, by turning each
branch of the case into a function argument to fold:2

fun ap (l1 : ’a list, l2 : ’a list) : ’a list = fold (op ::) l2 l1

val concatap : ’a list list -> ’a list = fold ap []

The SML basis library provides an implementation of fold as List.foldr

4.2 Tasks

For each task below, implement the specified function using List.foldr. You may not write
recursive solutions to any of these tasks. You may use List.map and non-recursive helper
functions unless otherwise indicated, but you may not use other built in library functions on
lists.

If you get stuck on a task, we suggest that you implement the function recursively using
the above template for structural recursion, and then turn the branches of the case into
arguments to List.foldr.

Task 4.1 (2%). Implement a function foldmap : (’a -> ’b) -> ’a list -> ’b list

such that

foldmap ∼= List.map

You may not use List.map for this task.

Task 4.2 (2%). Implement a function foldid : ’a list -> ’a list that is the identity
function for lists. Specifically,

foldid ∼= (fn x => x)

Your implementation must run in linear, not constant, time.

Task 4.3 (3%). Implement a function foldfilter : (’a -> bool) -> ’a list -> ’a

list that keeps all and only the elements of the list that satisfy the predicate, in their
original order. For example,

foldfilter (fn x => x > 9) [1,2,3,4,10,11,12] ∼= [10,11,12]

Specifically,

foldfilter ∼= List.filter

2The op keyword is an extremely convenient way of taking an infix identifier, like ::, and using it as a
normal function—if I is some infix identifier, op I ∼= fn (x,y) => x I y. So, for example,

(op ::) ∼= (fn (x,y) => x::y)

11

Task 4.4 (7%). Implement a function prodofsum : int list list -> int that, given
a list of lists, computes the sum of each inner list, and then the product of those sums.3 For
example,

prodofsum [[1,2,3],[],[],[∼6]] ∼= 6 * 0 * 0 * ∼6 ∼= 0

Task 4.5 (8%). Implement a function cntchar : char list -> char -> int * int

with one call to List.foldr. If there are n characters in a list of characters l and a particular
character c appears in the list k times, then cntchar l c ∼= (k,n).4 For example,

cntchar (explode "curry") #"r" ∼= (2,5)

cntchar (explode "howard") #"z" ∼= (0,6)

4.3 Tail Recursion on Lists

Another common pattern of recursion on lists is tail recursion with an accumulator param-
eter. For example, recall the following tail recursive function from Lecture 11:

fun sumlist (l : int list) : int =

let

fun sumtc (l : int list) (acc : int) : int =

case l

of [] => acc

| x::xs => sumtc xs (acc + x)

in

sumtc l 0

end

This is similar to fold above, in that we’re combining every element of a list with some
function and with some base case—here, integer addition and zero—but different in that
we pass ourselves the partial results in an accumulator argument to make the function tail
recursive. We can abstract that pattern out as another higher order foldtc function:

fun foldtc (f : ’a * ’b -> ’b) (b : ’b) (l : ’a list) : ’b =

case l

of [] => b

| x::xs => foldtc f (f (x,b)) xs

3Recall that the empty sum is 0 and the empty product is 1.
4Recall that #"x" is the SML notation for character literals.

12

We can then use this new foldtc to recapture our original tail-recursive sumlist func-
tion:

val sumlist : int list -> int = foldtc (op +) 0

The SML basis library provides an implementation of foldtc as List.foldl. It’s im-
portant to note that while both functions have the same type, they encapsulate profoundly
different—if related—patterns of recursion on lists.

4.4 More Tasks

For each task below, implement the specified function using List.foldr or List.foldl as
appropriate. You may not write recursive solutions to these tasks. You may use @ but you
may not use other built in functions on lists.

Task 4.6 (4%).
Implement a function foldrevslow : ’a list -> ’a list that reverses its argument

in time quadratic in its length. Specifically,

foldrevslow ∼= List.rev

Task 4.7 (4%).
Implement a function foldrevfast : ’a list -> ’a list that reverses its argument

in time linear in its length. Specifically,

foldrevfast ∼= List.rev

13

	Introduction
	Getting The Homework Assignment
	Submitting The Homework Assignment
	Methodology
	Style
	Due Date
	Characters

	Regular Expressions
	File Systems
	Structural Recursion on Trees
	Structural Recursion on a File System
	du
	grep

	Patterns of Recursion On Lists
	Structural Recursion on Lists
	Tasks
	Tail Recursion on Lists
	More Tasks

