
15-150 Spring 2012
Homework 05

Out: Tuesday, 14 February 2012
Due: Saturday, 25 February 2012 at 01:50 EST

1 Introduction

This homework will focus on applications of higher order functions, polymorphism, and
user-defined datatypes.

1.1 Getting The Homework Assignment

The starter files for the homework assignment have been distributed through our git repos-
itory as usual.

1.2 Submitting The Homework Assignment

To submit your solutions, place your hw05.pdf and modified hw05.sml files in your handin
directory on AFS:

/afs/andrew.cmu.edu/course/15/150/handin/<yourandrewid>/hw05/

Your files must be named exactly hw05.pdf and hw05.sml. After you place your files in this
directory, run the check script located at

/afs/andrew.cmu.edu/course/15/150/bin/check/05/check.pl

then fix any and all errors it reports.
Remember that the check script is not a grading script—a timely submission that passes

the check script will be graded, but will not necessarily receive full credit.
Also remember that your written solutions must be submitted in PDF format—we do

not accept MS Word files.
Your hw05.sml file must contain all the code that you want to have graded for this

assignment and compile cleanly. If you have a function that happens to be named the same
as one of the required functions but does not have the required type, it will not be graded.

1

1.3 Methodology

You must use the five step methodology for writing functions for every function you write
on this assignment. In particular, you will lose points for omitting the purpose, examples,
or tests even if the implementation of the function is correct.

1.4 Style

We will continue grading this assignment based on the style of your submission as well as its
correctness. Please consult course staff, your previously graded homeworks, or the published
style guide as questions about style arise.

1.5 Due Date

This assignment is due on Saturday, 25 February 2012 at 01:50 EST. Note that this is not
the normal day or time! Remember that this deadline is final and that we do not accept late
submissions.

1.6 Recursive Code

Unless otherwise stated, the functions you define for this assignment must not be recursive.
Instead, you should rely on the higher order list functions to do the work of manipulating
lists for you. While you are free to use others as you see fit, the following list functions will
very likely be useful:

• List.map, which takes a function and a list and returns a list whose elements are the
result of applying the given function to the corresponding element in the given list.
For example,

- List.map (fn x => Int.toString (x*x*2)) [4,2,1];

val it = ["32","8","2"] : string list

This is a curried version of the map we wrote in class.

• ListPair.map, which takes a function and a pair of lists and applies the function to
the pairs of elements of the list in order. For example,

fun doctor (n : int, s : string) : string =

case n of

0 => ""

| => s ^ (doctor (n - 1,s)

2

- ListPair.map (fn(i,s) => doctor (i*3,s))

([0,2,1],[‘‘hello’’,’’goodbye’’]);

val it = ["",‘‘goodbyegoodbyegoodbyegoodbyegoodbyegoodbye’’]

: string list

If this feels familiar, it’s because ListPair.map can be expressed through a combination
of the normal List.map and your zip function from Homework 3.

• ListPair.zip, which takes a pair of lists and returns a list of pairs whose length is
the minimum of the lengths of the input lists. For example,

- ListPair.zip([1,2,4,2], [true, false, false]);

val it = [(1,true),(2,false),(4,false)] : (int * bool) list

This is the same as the function zip from Homework 3.

• ListPair.unzip, takes a list of pairs and returns a pair of lists. For example,

- ListPair.unzip [(1,"true"),(2,"false"),(4,"false")];

val it = ([1,2,4],["true","false","false"])

: int list * string list

which is similar to the unzip from Homework 3.

Be warned: solutions that are correct but are recursive instead of calling an appropriate
higher order function will receive little or no credit.

1.7 Rational Numbers

In several of the tasks on this assignment, we will use an SML representation of the rational
numbers. Rational numbers are represented by the type rat in hw05.sml. We also have
the following functions (the first four are defined to be infix operators) for computing with
rational numbers:1

val // : int * int -> rat

val ++ : rat * rat -> rat

val -- : rat * rat -> rat

val ** : rat * rat -> rat

val divide : rat * rat -> rat

val ~~ : rat -> rat

1The definitions of these functions are given in the files in the rationals directory. You can read these files
if you choose, but you do not need to understand their contents to complete the tasks on this assignment.

3

The // function computes the rational number corresponding to the first int over the second.
This is how you get values of type rat from values of type int.

The other functions compute the indicated operation (i.e., addition, subtraction, multi-
plication, division, and unary negation) on values of type rat.

For example, the expression

val x = (5 // 9) ++ (12 // 10)

binds the identifier x to a value of type rat that represents

5

9
+

12

10
=

79

45

If you have an expression that has type rat and you would like to see a string represen-
tation of it, you can call the function r2s also provided in hw05.sml. For example, consider
the following session with the SML REPL:

val r2s = fn : rat -> string

- 5 // 0;

uncaught exception Fail [Fail: denominator can’t be zero]

raised at: rat.sml:31.42-31.74

- 5 // 1;

val it = - : Rational.t

- r2s (5 // 1);

val it = ‘‘5’’ : string

- r2s ((5//1) ** (1221 // 51) ++ (2//90));

val it = ‘‘91592/765’’ : string

4

2 Proofs

2.1 Write And Prove

In this question you will write a simple function on lists and prove its correctness. This is
an independent part of this assignment meant to give you practice coding and proving at
the same time; you shouldn’t worry if you don’t use the function defined here in rest of the
assignment.

You may not use @, any other built-in list functions, or any helper functions for the tasks
in this section. If you do, you will receive little or no credit for the whole section. The
implementations of the programming tasks in this section may be recursive.

2.1.1 Implementing Concat

Task 2.1 (5%). Write a function

concat : ’a list list -> ’a list

concat flattens a list of lists of any type into one list of that type while preserving the order.
For example,

concat [] ∼= []

concat [[]] ∼= []

concat [[[]]] ∼= [[]]

concat [[1]] ∼= [1]

concat [[],["a","b"],[],[],[],["z"]] ∼= ["a","b","z"]

concat [[1,2],[5,6],[],[10,10]] ∼= [1,2,5,6,10,10]

2.1.2 A Theorem About Concat

Recall the definition of the append function we gave in Lecture 3:

fun ap (l1 : ’a list, l2 : ’a list) : ’a list =

case l1

of [] => l2

| x::xs => x :: (ap (xs,l2))

We can write another implementation of the concat spec in terms of ap as

fun concatap (l : ’a list list) : ’a list =

case l

of [] => []

| (x::xs) => ap(x, concatap xs)

5

Your task will be to prove that these two implementations are indistinguishable.

Task 2.2 (3%). First, prove Lemma 1 relating ap and concatap.2

Lemma 1. For all l1 : α list and all l2 : α list list

ap(l1, concatap l2) ∼= concatap(l1 :: l2)

Task 2.3 (12%). Now, prove Theorem 1 by structural induction. You will almost certainly
need to use Lemma 1 that you proved above in your proof here; you may also use Lemma 2
freely without proof. Remember to closely follow the proof templates we give in the lecture
notes, argue carefully with equivalence, and cite the lemmas as you use them.3

Theorem 1. For all l : α list list, concat l ∼= concatap l

Lemma 2. For all l : α list, ap([],l) ∼= l

2 Hint: You do not need induction for this proof.
3It’s interesting to note that we could have stated Theorem 1 a more concisely as

concat ∼= concatap

which is a direct transcription of the intuition of the problem into a formal statement. The statement given
is an immediate expansion of this, using the definition of contextual equivalence at a function type, so we
don’t lose anything by being a little bit more verbose.

6

2.2 Justifications

In Lecture 4, we had a function raiseBy : int list * int -> int list that added its
int argument to each element of the int list. We proved that for all values l : int list,
a: int, b: int,

raiseBy(raiseBy(l, a), b) ∼= raiseBy(l, a + b)

As it turns out, this is a special case of a property called map fusion. Mapping f over some
list l and then mapping another function g over the result gives a list that is equivalent to the
one you would get if you map g o f (“g composed with f”) over the original l. In this task,
you will prove that map has this map fusion property: map (g o f) ∼= (map g) o (map f).

Task 2.4 (15%). Fill in the blanks in the following proof. The goal is for you to practice
careful justification of statements; pay particular attention to valuability and totality.
Most lines will be fairly short (with answers similar to ‘by the IH’, or ‘step, because e valu-
able’, and so on), save for the line marked with *** which requires slightly more explanation.
Your handin should be a list

1. justification for (1)

2. justification for (2)
...

18 justification for (18)

Assume the following lemma:

Lemma 3. For all types a, b and values f : a->b, if f is total then map f is valuable and
total.

Theorem 2. For all types a, b, c, all values f : a -> b and g : b -> c, if f and g are
total, then

(map g) o (map f) ∼= map (g o f) : a list -> c list

Proof. Assume values f, g such that f and g are total.
First, observe that various functions are valuable and total; use these facts below.

map f is valuable and total (1)

map g is valuable and total (2)

g o f is valuable (3)

g o f is total (4)

map (g o f) is valuable and total (5)

7

Next, by definition of equality for functions, it suffices to show that

for all l : a list, (map g o map f) l ∼= map (g o f) l : c list

Observe that:
(map g o map f) l

∼= (fn x => map g (map f x)) l (6)

∼= map g (map f l) (7)

It therefore suffices to show that

(map g (map f l)) ∼= map (g o f) l

Proceed by induction on the structure of l.

Case for []:

WTS: (8)

(map g (map f []))

∼= (map g []) (9)

∼= [] (10)

∼= (map (g o f) []) (11)

Case for x::xs, where x and xs are values:

IH: (12)

WTS: (13)

(map g (map f (x::xs)))

∼= (map g (f x :: map f xs) (14)

∼= g (f x) :: map g (map f xs) (15) ***

∼= (g o f) x :: map g (map f xs) (16)

∼= (g o f) x :: map (g o f) xs (17)

∼= map (g o f) (x::xs) (18)

8

3 Polymorphism, Higher-order functions, Options

Last week, we introduced several new language features: polymorphism, option types, and
higher-order functions. In this problem, you will write some simple functions using these
new tools. It is very likely that these functions will be helpful later on in the assignment.

Task 3.1 (7%). Write the function

allpairs : ’a list * ’b list -> (’a * ’b) list list

allpairs(l1,l2) returns all of the possible pairings of elements from l1 with elements from
l2, in their original order. For example,

allpairs([1,2,3],["a","b","c"]) == [[(1,"a"),(1,"b"),(1,"c")],

[(2,"a"),(2,"b"),(2,"c")],

[(3,"a"),(3,"b"),(3,"c")]]

allpairs([1,2,3],[]) == [[],[],[]]

allpairs([],[1,2,3]) == []

You may not define this function recursively.

Task 3.2 (15%). Write the function

transpose : ’a list list -> ’a list list

that interchanges the rows and columns of a list of lists. For example,

transpose [[1,2]] ==> [[1],

[2]]

transpose [[1,2], ==> [[1,3],

[3,4]] [2,4]]

transpose [[1,2],

[3,4], ==> [[1,3,5],

[5,6]] [2,4,6]]

More formally, we will say that a value m : ’a list list is a valid ’a-matrix iff the
following conditions hold:

1. length m > 0

2. There exists some n > 0 such that for every element l of m, length l ∼= n

9

That is, m is non-empty, each element of m is non-empty, and m is rectangular.
Transpose must meet the following spec:

If m : ’a list list is a valid ’a-matrix, then transpose m evaluates to a list
of length n, whose ith element is the list of elements of elements of m that occur
at position i of some inner list, in their original order.

Your implementation of transpose may be recursive, but will also need to use higher
order functions.

Task 3.3 (8%). Write a function

fun extract (p : ’a -> bool, l : ’a list) : (’a * ’a list) option =

such that

1. If there is some element x of l for which p x == true, then extract(p,l) evaluates
to SOME(x,l’), where l’ is l without that particular x but unchanged otherwise.

2. If for every element x of l, p x ==> false then extract(p,l) evaluates to NONE.

If there is more than one element satisfying the predicate in a particular argument list, it is
your choice which to return.

For example:

extract(oddP , [2,3,4]) == SOME (3,[2,4])

extract(oddP , [2,4,6]) == NONE

extract(fn x => String.size x < 2 , ["aaa","b","bca"])

== SOME ("b", ["aaa", "bca"])

extract should be recursive. You should use this function when you implement Blocks
World below.

10

4 Polynomials

In lecture on Thursday, we will discuss that we can represent a polynomial c0+c1x+c2x
2+. . .

as a function that maps a natural number, i, to the coefficient ci of xi: For these tasks we
will take the coefficients to be rational numbers (of type rat) (rather than integers, as in
lecture). Therefore, we have the following type definition for polynomials:

type poly = int -> rat

As an example of how to define operations on polynomials defined in this manner, recall the
following definition of addition of polynomials from lecture:

fun plus (p1 : poly, p2 : poly) : poly = fn e => p1 e ++ p2 e

4.1 Differentiation

Recall from calculus that differentiation of polynomials is defined as follows:

d

dx

n∑
i=0

cix
i =

n∑
i=1

icix
i−1

Task 4.1 (5%). Define the function

differentiate : poly -> poly

that computes the derivative of a polynomial represented in normal form. Note that differentiate
should not be recursive.

4.2 Integration

Recall from calculus that integration of polynomials is defined as follows:∫ n∑
i=0

cix
i dx = C +

n∑
i=0

ci
i+ 1

xi+1

where C is an arbitrary constant known as the constant of integration. As C can be any num-
ber, the result of integration is a family of polynomials, one for each choice of C. Therefore,
we will represent the result of integration as a function of type rat -> poly.

Task 4.2 (5%). Define the function

integrate : poly -> (rat -> poly)

that computes the family of polynomials corresponding to the integral of the argument
polynomial. Note that integrate should not be recursive.

11

5 Matrices

5.1 Representation

Lists of lists provide a simple representation of matrices in SML: each list in the nested list
is a row of the matrix. If we want to consider matrices of rational numbers, we can use the
rat type discussed above and define

type matrix = rat list list

For example, we encode the matrix [
10 0 −3
8 1 3

]
in SML with the list of lists of rats

[[10//1, 0//1, ~3//1],[8//1, 1//1, 3//1]]

This representation makes it very natural to exploit some of the higher order functions
defined in the SML Basis library to implement familiar matrix operations in an elegant and
hands-off way.

Before doing this, we need to define some terminology to describe matrices:

• We will say that a particular value m of type rat list list is a valid matrix if and
only if the following conditions hold:

1. length m > 0

2. There exists some n > 0 such that for every element l of m, length l ∼= n

• The height of a valid matrix m is length m—which is to say the number of rows.

• If m is a valid matrix and r is any element of m, the width of m is length r—which is
to say the number of columns.

• If a matrix has height h and width w, then we say it has dimensions h × w, and that
it is an h × w matrix.

5.1.1 Assumption on Input

For all the questions in the section, you may assume that your inputs of type matrix are
valid.

12

5.2 Starter Code

In addition to the higher order list functions, we have given you a few functions that will be
useful as you complete this task. You should look at how we implemented these functions
to get some ideas about how to implement your functions in the coming sections.

• toString : matrix -> string prints a decent representation of a matrix.

• zed : int * int -> matrix returns a matrix with every entry equal to zero. The
first argument is the number of rows, the second argument is the number of columns.

• width : matrix -> int returns the number of columns in a matrix.

• height : matrix -> int returns the number of rows in a matrix.

• summat : matrix list -> matrix

If ms is a list of matrices that all have dimension n ×m with n > 0 and m > 0, then
summat(ms) returns a matrix that is the sum of all the matrices in ms. This function
is defined using your implementation of plus, so it won’t work until you’ve completed
that task.

• mateq : matrix * matrix -> bool evaluates to true if and only if both argument
matrices are equal. Note that you should only use this in writing tests for your code.

5.3 Matrix Addition

Task 5.1 (7%). Write the function

plus : matrix * matrix -> matrix

If A and B are valid matrices with the same dimensions, plus(A,B) performs addition on the
matrices A and B element-wise. For example,1 3

1 0
1 2

+

0 0
7 5
2 1

 =

1 + 0 3 + 0
1 + 7 0 + 5
1 + 2 2 + 1

 =

1 3
8 5
3 3


plus should not be a recursive function.

5.4 Matrix Multiplication

5.4.1 Familiar Definition

We will now implement matrix multiplication through a short series of helper functions.4

Recall that if A is an (n× x) matrix and B is an (x×m) matrix, their product (AB) is an

4The details in this section are adapted from several sources. Primarily, we used the fourth edi-
tion of Gilbert Strang’s excellent book “Linear Algebra and Its Applications”. Some of the diagrams
and LATEXwere obtained from http://en.wikipedia.org/wiki/Matrix_multiplication and http://

mathworld.wolfram.com/MatrixMultiplication.html

13

http://en.wikipedia.org/wiki/Matrix_multiplication
http://mathworld.wolfram.com/MatrixMultiplication.html
http://mathworld.wolfram.com/MatrixMultiplication.html

(n×m) matrix whose entries are

(AB)i,j =
x∑

k=1

Ai,kBk,j

For example, [
8 9 9
5 −1 20

]10 2
40 8
9 0

 =

[
521 88
190 2

]
This sum can be represented visually, as shown in Figure 1.

Figure 1: Matrix Multiplication

5.4.2 Alternative Statement

This familiar definition of multiplication is correct, but does not mesh well with our repre-
sentation of matrices: we don’t have constant time access to the individual elements in a
matrix, so implementing this directly would be very wasteful. Instead, we’ll use an equivalent
definition of multiplication that’s more suited to our list-of-rows representation.

Before we can give the alternative statement, we need to define a few new terms.

Def. If M is a matrix, the transpose of M is a matrix MT where the columns of MT are
the rows of M . For example [

1 2
]T

=

[
1
2

]
[
1 2
3 4

]T
=

[
1 3
2 4

]
1 2

3 4
5 6

T

=

[
1 3 5
2 4 6

]

14

Def. A column vector is a matrix with dimension (n× 1) for some n, as in
v1
v2
...
vn


Def. If V and E are column vectors, the outer product, written V ⊗E, is the matrix product

V ET . Since V and E are column vectors, this has the much simpler form
v1
v2
...
vm

 [e1 e2 · · · en
]

=


v1e1 v1e2 · · · v1en
v2e1 v2e2 · · · v2en

...
...

. . .
...

vme1 vme2 · · · vmen


where vi and ei denote the ith elements of V and E respectively.

Def. If M is any matrix, we denote its ith row as Mri.

Def. If M is any matrix, we denote its ith column as Mci.

Def. If M is any matrix, we denote the column vector of all its rows Mr. The ith element
of Mr is Mri. For example, if we have some matrix M with r-many rows and c-many
columns,

M =


m1,1 m1,2 · · · m1,c

m2,1 m2,2 · · · m2,c
...

...
. . .

...
mr,1 mr,2 · · · mr,c


then

Mr =


Mr1

Mr2
...

Mrr

 =


[m1,1 m1,2 · · · m1,c]
[m2,1 m2,2 · · · m2,c]

...
...

. . .
...

[mr,1 mr,2 · · · mr,c]


Def. If M is any matrix, we denote the column vector of all its columns Mc. The ith element

of Mc is Mci. For example, if we have some matrix M with r-many rows and c-many
columns,

M =


m1,1 m1,2 · · · m1,c

m2,1 m2,2 · · · m2,c
...

...
. . .

...
mr,1 mr,2 · · · mr,c


15

then

Mc =


Mc1

Mc2
...

Mcc

 =


[m1,1 m2,1 · · · mr,1]
[m1,2 m2,2 · · · mr,2]

...
...

. . .
...

[m1,c m2,c · · · mr,c]

 =
(
MT

)
r

Using this notation, if A is a (n×x) matrix and B is a (x×m) matrix, the product (AB)
is5

(AB) = (Ac)
TBr

=
[
Ac1 Ac2 · · · Acn

]

Br1

Br2
...

Brn


= Ac1 ⊗Br1 + Ac2 ⊗Br2 + · · · + Acn ⊗Brn

=
n∑

i=1

Aci ⊗Bri

Task 5.2 (7%). Write the function

val outerprod : rat list * rat list -> matrix

For V1,V2 : rat list representing vectors, outerprod(V1, V2) computes the outer prod-
uct of V1 and V2. outerprod should not be a recursive function.

Task 5.3 (7%). Write the function

times : matrix * matrix -> matrix

If A is a valid matrix with dimension n × x and B is a valid matrix with dimension x ×m,
times(A,B) computes the product AB using the outer product definition. times should not
be a recursive function.

Hint: If you make appropriate use of higher-order functions, your solutions to the tasks in
this problem will be quite short and elegant. For example, our solutions to plus, outerprod,
and times consist of 1 line of code each. Correct but more-verbose solutions will receive
credit, but if you find yourself writing lines and lines of code, you should stop and reconsider.

5If you’ve taken Matrix or Linear algebra, this should be eerily familiar. The definition is an inner product
where the elements in the column vectors are vectors, so instead of multiplying them, we take their outer
product. It should be relatively easy to see why this is an equivalent definition to the familiar one. It happens
to be defined over the vector space of vectors, rather than the vector space of rationals, which is why we use
matrix addition and matrix outer product rather than rational addition and rational multiplication.

16

6 Blocks World

In artificial intelligence, planning is the task of figuring what an agent (a robot, that paperclip
in Microsoft Word, your roommate, etc.) should do. One way to solve planning problems is
to simulate the circumstances of the agent, so that you can simulate plans, and then search
through potential plans for good ones.

A simple planning problem, which is often used to illustrate this idea, is blocks world.
The idea is that there are a bunch of blocks on a table:

--- --- ---

|A| |B| |C|

--- --- ---

and a robotic hand. You can pick one block up with the hand:

/|\

|C|

--- ---

|A| |B|

--- ---

and place it back on the table or on another block:

|C|

--- ---

|A| |B|

--- ---

Of course, you can’t put a block on one that already has something on it, so in the next two
moves we can’t pick up B and then put it on A. A planning problem would be something like
“starting with the blocks on the table, make the tower BCA”.

In this problem, you will represent blocks world in ML, so that you can simulate plans
(we won’t ask you to search for plans that achieve specific goals).

At the end of the problem, you’ll be able to interact with Blocks World as in Figure 2.
We’ve written all the input/output code for you, so you just need to do the interesting bits.

17

- playBlocks ();

Possible moves:

pickup <block> from table

put <block> on table

pickup <block> from <block>

put <block> on <block>

quit

--- --- ---

|A| |B| |C|

--- --- ---

Next move: pickup C from table

/|\

|C|

--- ---

|A| |B|

--- ---

Next move: put C on A

|C|

--- ---

|A| |B|

--- ---

Figure 2: Sample Blocks World Interaction

18

6.1 Ontology

We will model Blocks World as follows:

• There are three blocks, A, B, C.

• We will represent the state of the world as a list of facts. There are five kinds of facts:

– Block b is free (available to be picked up)

– Block a is on block b

– Block a is on the table

– The hand is empty

– The hand is holding block b

• At each step, there are four possible moves:

pickup from table

put on table

pickup <a> from

put <a> on

These moves act as follows:

– pickup <a> from table

Before: a is free, and a is on the table, and the hand is empty.
After: the hand holds a.

– put on table

Before: the hand holds a.
After: the hand is empty, and a is on the table, and a is free.

– pickup <a> from

Before: a is free, and a is on b, and the hand is empty.
After: b is free, and the hand is holding a.

– put <a> on

Before: the hand holds a, and and b free.
After: a is free, the hand is empty, and a is on b.

In these descriptions, the “before” facts must hold about the world for the move to
be executed; after executing the move, the “before” facts no longer hold (e.g. after
picking up a block, the hand is no longer empty), and the “after” facts holds.

19

6.2 Tasks

Task 6.1 (5%). First, we will need a function to extract many elements from a list. Write
a function

extractMany : (’a * ’a -> bool * ’a list * ’a list) -> (’a list) option

extractMany is polymorphic in the list’s element type, but it needs to test whether two list el-
ements are equal. For this reason, extractMany takes an argument function eq:’a * ’a -> bool

that can be used to test whether two values of type ’a are equal.
extractMany (eq,toExtract,from) “subtracts” the elements of toExtract from from,

checking that all the elements of toExtract are present in from. More formally, if toExtract
is a sub-multi-set (according to the definition given in the subset-sum problem on HW 3, but
using eq to determine when an element “appears”) of from, then extractMany(eq,toExtract,from)

returns SOME xs, where xs is from with every element of toExtract removed. If toExtract
is not a sub-multi-set of from, then extractMany(eq,toExtract,from) returns NONE.

This means that the number of times an element occurs matters, but order does not:

extractMany(inteq, [2,1,2], [1,2,3,3,2,4,2]) == SOME [3,3,4,2]

extractMany(inteq, [2,2], [2]) == NONE

You may define this recursively, and should use extract.

Task 6.2 (8%). Define datatypes representing blocks, moves, and facts, according to the
above ontology:

datatype block = ...

datatype move = ...

datatype fact = ...

Observe the convention that datatype constructors start with an upper-case letter (e.g. Node
and Empty).

Task 6.3 (2%). Define a state of the world to be a list of facts:

type state = fact list

Fill in

val initial : state = ...

to represent the following state: the hand is empty, each of A,B,C is on the table, and each
of A,B,C is free.

Task 6.4 (3%). Define a short helper function

consumeAndAdd : (state * fact list * fact list) -> state option

20

consumeAndAdd(s,before,after) subtracts before from s and adds after to the result,
checking that every fact in before occurs. More formally, if before is a sub-multi-set of
s, then consumeAndAdd(s, before, after) returns SOME s’, where s’ is s with before

removed and after added. If before is not a sub-multi-set, consumeAndAdd(s, before,

after) returns NONE.
You will need to use the provided function extractManyFacts, which instantiates your

extractMany with an equality operation derived from the fact datatype.
consumeAndAdd should not be recursive.

Task 6.5 (6%). Implement a function

step : (move * state) -> state option

If the “before” facts of m hold in s, then step(m,s) must return SOME s’, where s’ is the
collection of facts resulting from performing the move m. It should return NONE if the move
cannot be applied in that state. This function should not be recursive.

Optional Task: In the file blocks_world.sml, fill in your datatype constructors at the
spots indicated. You will then be able to play Blocks World interactively as follows:

- use "hw05.sml";

- use "blocks_world.sml";

- playBlocks();

Note that the support-code uses your transpose function from Section 3, so if the output
seems wonky, you should check your transpose implementation for bugs. This task is
optional; do not hand in blocks_word.sml.

21

	Introduction
	Getting The Homework Assignment
	Submitting The Homework Assignment
	Methodology
	Style
	Due Date
	Recursive Code
	Rational Numbers

	Proofs
	Write And Prove
	Implementing Concat
	A Theorem About Concat

	Justifications

	Polymorphism, Higher-order functions, Options
	Polynomials
	Differentiation
	Integration

	Matrices
	Representation
	Assumption on Input

	Starter Code
	Matrix Addition
	Matrix Multiplication
	Familiar Definition
	Alternative Statement

	Blocks World
	Ontology
	Tasks

