
15-150 Spring 2012
Homework 04

Out: Tuesday, 7 February 2012
Due: Wednesday, 15 February 2012 at 09:00 EST

1 Introduction

This homework will focus on lists, trees, and work-span analysis.

1.1 Getting The Homework Assignment

The starter files for the homework assignment have been distributed through our git repos-
itory as usual.

1.2 Submitting The Homework Assignment

To submit your solutions, place your hw04.pdf and modified hw04.sml files in your handin
directory on AFS:

/afs/andrew.cmu.edu/course/15/150/handin/<yourandrewid>/hw04/

Your files must be named exactly hw04.pdf and hw04.sml. After you place your files in this
directory, run the check script located at

/afs/andrew.cmu.edu/course/15/150/bin/check/04/check.pl

then fix any and all errors it reports.
Remember that the check script is not a grading script—a timely submission that passes

the check script will be graded, but will not necessarily receive full credit.
Also remember that your written solutions must be submitted in PDF format—we do

not accept MS Word files.
Your hw04.sml file must contain all the code that you want to have graded for this

assignment and compile cleanly. If you have a function that happens to be named the same
as one of the required functions but does not have the required type, it will not be graded.
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1.3 Methodology

You must use the five step methodology for writing functions for every function you write
on this assignment. In particular, you will lose points for omitting the purpose, examples,
or tests even if the implementation of the function is correct.

1.4 Style

Starting with this assignment, we will begin grading your submissions based on your coding
style. There are several ways that you can learn what is good style and what isn’t:

• Your returned and graded homework submissions have been marked up as if we had
graded them for style without actually deducting points for style.

• We have published solution code for the previous assignments, labs, and lectures.

• We have published a style guide at

http://www.cs.cmu.edu/~15150/resources/style.pdf.

There is also a copy in the docs subdirectory of your git clone.

• You can ask your TAs about specific examples, or post on Piazza asking general ques-
tions.

1.5 Due Date

This assignment is due on Wednesday, 15 February 2012 at 09:00 EST. Remember that this
deadline is final and that we do not accept late submissions.
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2 Types For This Assignment

2.1 rel

We define a type rel that’s used to represent the position of elements in an ordering relative
to each other. As always, you inspect values of type rel with case statements. rel is defined
as

datatype rel = LT | GEQ

You can use the function

(* Purpose: intrelcmp(x,y) == LT if x < y

intrelcmp(x,y) == GEQ if x >= y *)

val intrelcmp : int * int -> rel

provided in the starter code to obtain a rel.

2.2 tree

The type tree represents binary trees of integers with data stored only in the internal nodes.
This type is defined as

datatype tree =

Empty

| Node of tree * int * tree

• The tree Empty has depth 0. The tree Node (l,x,r) has depth d if and only if

1. l has depth dl

2. r has depth dr

3. d = max(dl, dr) + 1.

• The tree Empty has size 0. The tree Node(l,x,r) has size s if and only if

1. l has size sl

2. r has size sr

3. s = sl + sr + 1

• The tree Empty is balanced. The tree Node(l,x,r) is balanced if and only if

1. l is balanced

2. r is balanced

3. l has depth dl, r has depth dr and |dl − dr| ≤ 1.
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• The tree Empty is sorted. The tree Node(l,x,r) is sorted if and only if

1. l is sorted

2. r is sorted

3. For every node Node(ll,xl,rl) in l, xl < x

4. For every node Node(lr,xr,rr) in r, xr ≥ x

These definitions are implemented in lib.sml, with a few other helper functions. You
should feel free to write your tests in terms of these functions.

• depth : tree -> int computes the depth of its argument.

• size : tree -> int computes the size of its argument.

• isbalanced : tree -> bool evaluates to true if and only if its argument is balanced.

• issorted : tree -> bool evaluates to true if and only if its argument is sorted.

• tolist : tree -> int list computes a flattening of its argument into a list, as
given in class.

• treeeq : tree * tree -> bool tests whether two trees are equal
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3 Correctness of Insertion Sort

In the Lecture 6 notes, you can find a discussion of a simple sorting algorithm called insertion
sort:

fun insert (n : int , l : int list) : int list =

case l of

[] => n :: []

| (x :: xs) => (case n < x of

true => n :: (x :: xs)

| false => x :: (insert (n , xs)))

fun isort (l : int list) : int list =

case l of

[] => []

| (x :: xs) => insert (x , isort xs)

Recall the following definition of sortedness on lists:

• [] sorted

• e::es sorted iff e valuable and es sorted and (∀x ∈ es, e ≤ x)

• e sorted if e ∼= e’ and e’ sorted

Task 3.1 (10%). Prove the following spec for insert:

For all values n:int and l:int list, if l sorted then insert(n,l) sorted

Task 3.2 (2%). Prove the following corollary:

For all valuable expressions e:int and es:int list,
if es sorted then insert(e,es) sorted

Your proof should not use induction.

Task 3.3 (8%). Prove the following spec for isort:

For all values l:int list, (isort l) sorted

You may assume that insert and isort are total, and that insert (x,l) is a permuta-
tion of x::l. The proof of correctness of mergesort in the Lecture 6 notes may be a helpful
reference.
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4 QuickSort

QuickSort is a well-known sorting algorithm. In terms of lists, the idea is as follows:

1. The empty list is sorted.

2. Any singleton list is sorted.

3. If the list being sorted has more than one element:

(a) Pick a pivot element from the list being sorted.

(b) Divide the list being sorted into two lists: a list of elements less than the pivot
and a list of elements greater than or equal to the pivot.

(c) Call QuickSort recursively to sort both lists.

(d) Append these lists together with the pivot in the appropriate order.

The main concern in making QuickSort a practical algorithm comes in choosing the
pivot. A näıve answer is to always choose the first element of the list for your pivot, and
this is what you will implement in this assignment. This simple policy gives QuickSort
a worst case work in O(n2) on a list of n elements, rather than the O(n log n) we got for
mergesort: if the list being sorted has no repeated elements, and happens to be in reverse-
sorted order, then the list of elements greater than the pivot is empty, the list of elements
equal to the pivot is just that contains only the pivot, and the list of elements less than the
pivot has (n − 1) elements. However, this question will not deal with these issues. We are
only concerned with implementing a näıve QuickSort on two different types.

4.1 QuickSort on Lists

Task 4.1 (5%). Implement a function

filter_l : int list * int * rel -> int list

filter l(l,p,r) computes a list with only those elements of l that are in the appropriate
relation to the pivot p, where “appropriate” is determined by r. More formally: For all
values l:int list, p:int, and r:rel:

• If r is LT, then filter l (l,p,r) contains all and only the elements of l that are less
than p.

• If r is GEQ, then filter l (l,p,r) contains all and only the elements of l that are
greater than or equal to p.

Task 4.2 (5%). Implement QuickSort on lists in the function

quicksort l : int list -> int list

For any list l, (quicksort l l) evaluates to a permutation of l that is sorted in increasing
order.
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4.2 QuickSort on Trees

As we’ve discussed in lecture, there is not a lot to be gained by using parallel sorting algo-
rithms on lists: there are dependencies inherent in the structure of a list that get in the way
of real parallelism.

In that spirit, you’ll now work up to an implementation of QuickSort on trees through a
series of helper functions. We’ll represent trees with the tree type defined at the beginning of
this assignment. In specs, we will say that x is an element of a tree t when Node(...,x,...)

appears somewhere in t.

4.2.1 Combine

Task 4.3 (5%). Implement a function

combine : tree * tree -> tree

that combines two trees into one. Unlike merge from lecture, you may not assume that the
trees are sorted. Your implementation must satisfy the following specifications:

• Functionality: For all trees T1 and T2, combine (T1,T2) is valuable, and contains
every element of T1 and every element of T2 and no other elements.

• Depth: For the analysis of quicksort, you need the following bound on the depth of
combine’s result:

Lemma 1. For all values t1 t2:tree,
depth (combine(t1,t2)) ≤ 1 + max(depth t1, depth t2.

• Running-time: Let d1 be the depth of T1, d2 be the depth of T2. The work and span
of (combine (T1,T2)) should be O(d1).

Task 4.4 (10%). Prove Lemma 1. Be sure to follow the template for structure induction on
trees. You may assume that combine is total, but must carefully cite this fact when you use
it.

Note: there is a simple recursive definition of combine that makes this theorem easy to
prove. If you did not find this solution in the previous task, it may be easier to revise your
code than to prove the spec for a more-complicated implementation. Hint: you won’t need
any helper functions.

4.2.2 Filter

Task 4.5 (12%). You’ll also need a tree-analogue of filter l:

filter : tree * int * rel -> tree
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Your implementation must satisfy the following specs:

• Functionality: If T is a value of type tree, p is a value of type int and r is a value of
type rel, then:

– If r is LT, then filter(T,p,r) contains all and only the elements of T that are
less than p.

– If r is GEQ, then filter(T,p,r) contains all and only the elements of T that are
greater than or equal to p.

• Depth: For all T:tree, p:int and r:rel, depth (filter (T,p,r)) ≤ depth T.

• Running-time: If d is the depth of a tree T, your implementation of (filter (T,p,ord))

should have O(d2) span. On a balanced tree, your implementation of filter should
have O(n) work.1

4.2.3 Quicksort

Task 4.6 (10%). Finally, put all the pieces together to write

quicksort t: tree -> tree

which implements QuickSort values of type tree.

• Functionality: quicksort t T is sorted and contains all and only the elements of T.

• Running-time: If T is a tree with depth d and size n, (quicksort t T) should have
O(n log n) work and O(d3) span, assuming the pivots yield balanced subproblems.

You should use issorted to test your implementation of quicksort t.

5 Balancing

In mergesort in lecture, we saw that we needed to rebalance a tree after manipulating it.
Rebalancing takes a tree that is not necessarily balanced, and computes a balanced tree with
the same elements.

We have provided almost all of an implementation of a simple rebalancing algorithm in
the handout. The key helper function is unimplemented. You will implement this helper
and then analyze the complexity of rebalance.

In all of the tasks, you should assume that the function size : tree -> int, which
computes the size of a tree, runs in constant time on all inputs. This happens to be obviously

1If you use the tree method to try to prove this, you will run into a sum that we have not yet seen in the
course. A recurrence of the form T (n) = k log n+ T (n/2) is O(n).
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false. However, it’s easy to make binary trees whose size can be computed in constant time
by caching the size at each node—so this is a relatively harmless lie.

Task 5.1 (15%). Implement the function

takeanddrop : tree * int -> tree * tree

takeanddrop(T,i) separates a tree T into “left” and “right” subtrees, T1 and T2 respectively.
T1 contains the leftmost i elements of T, in their original order, and T2 the remaining
elements, also in their original order. For example, if we define

val test =

Node

(Node (Node (Empty,1,Empty),

2,

Node (Empty,3,Empty)),

4,

Node (Node (Empty,5,Empty),

6,

Empty))

then we have

takeanddrop (test,3) ==

(Node (Node (Empty,1,Empty),2,Node (Empty,3,Empty)),

Node (Empty,4,Node (Node (Empty,5,Empty),6,Empty)))

More formally, suppose T is any tree, and i ≤ size T. Then takeanddrop (T,i) eval-
uates to a pair of trees (T1,T2) such that

• max(depth T1, depth T2) ≤ depth T

• size T1 ∼= i

• (tolist T1) @ (tolist T2) ∼= (tolist T)

This last condition ensures that T1 contains the leftmost elements, and that the elements of
T1 and T2 are in the appropriate order.

takeanddrop should raise Fail with “not enough elements” if and only if i > n.
If d is the depth of T then your implementation of (takeanddrop (T,i) must have O(d)

work and span.

Task 5.2 (18%). Your implementation of takeanddrop is necessary for the helper function
halves, which is used by rebalance; see the starter code. The following tasks ask you to
analyze these functions:
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1. Give a recurrence that describes the work of your implementation of takeanddrop,
Wtakeanddrop(d), in terms of the depth d of the input tree. Give a tight big-O bound
for Wtakeanddrop(d).

Note that if your takeanddrop meets the above spec, this will be in O(d), but you
should argue why your code does actually meet this spec.

2. Give a recurrence that describes the span of your implementation takeanddrop, Stakeanddrop(d),
in terms of the depth d of the input tree. Give a tight big-O bound for Stakeanddrop(d).

Note that if your takeanddrop meets the above spec, this will be in O(d), but you
should argue why your code does actually meet this spec.

3. Give a recurrence that describes the work of halves, Whalves(d), in terms of the depth
of the input tree. Give a tight big-O bound for Whalves(d).

4. Give a recurrence that describes the span of halves, Shalves(d), in terms of the depth
of the input tree. Give a tight big-O bound for Shalves(d).

5. Give a recurrence that describes the work of rebalance, Wrebalance(n), in terms of the
size n of the input tree. You should assume that the input is roughly balanced—that
is to say, there exists some constant c such that the depth of the input is c log n.

Use the tree method to give a closed form for this recurrence; your closed form may
involve a sum. Use this closed form to give a tight big-O bound for Wrebalance(n).

6. Give a recurrence that describes the span of rebalance, Srebalance(n), in terms of the
size of the input tree. You should assume that the input is roughly balanced—that is
to say, there exists some constant c such that the depth of the input is c log n.

Use the tree method to give a closed form for this recurrence; your closed form may
involve a sum. Use this closed form to give a tight big-O bound for Srebalance(n).

The recurrences for the later tasks should be defined in terms of the recurrences defined
in the earlier tasks for the helper functions.

You may use the following tight bounds as facts, but you should cite them when you use
them:

logn∑
i=1

log
( n

2i

)
is O

(
(log n)2

)
logn∑
i=1

2i log
( n

2i

)
is O (n)
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