
15-150 Spring 2012
Homework 03

Out: Tuesday, 31 January 2012
Due: Wednesday, 8 February 2012 at 09:00 EST

1 Introduction

This homework will focus on writing functions on lists and proving properties of them. This
homework is longer and harder than the previous two: start early!

1.1 Getting The Homework Assignment

The starter files for the homework assignment have been distributed through our git repos-
itory as usual.

1.2 Submitting The Homework Assignment

To submit your solutions, place your hw03.pdf and modified hw03.sml files in your handin
directory on AFS:

/afs/andrew.cmu.edu/course/15/150/handin/<yourandrewid>/hw03/

Your files must be named exactly hw03.pdf and hw03.sml. After you place your files in this
directory, run the check script located at

/afs/andrew.cmu.edu/course/15/150/bin/check/03/check.pl

then fix any and all errors it reports.
Remember that the check script is not a grading script—a timely submission that passes

the check script will be graded, but will not necessarily receive full credit.
Also remember that your written solutions must be submitted in PDF format—we do

not accept MS Word files.
Your hw03.sml file must contain all the code that you want to have graded for this

assignment and compile cleanly. If you have a function that happens to be named the same
as one of the required functions but does not have the required type, it will not be graded.

1



1.3 Methodology

You must use the five step methodology for writing functions for every function you write
on this assignment. In particular, you will lose points for omitting the purpose, examples,
or tests even if the implementation of the function is correct.

1.4 Due Date

This assignment is due on Wednesday, 8 February 2012 at 09:00 EST. Remember that this
deadline is final and that we do not accept late submissions.

2



2 Zippidy Doo Da

It’s often convenient to take a pair of lists and make one list of pairs from it. For instance,
if we have the lists

[5, 1, 2, 1] and [“a”, “b”]

we might be interested in the list

[(5, “a”), (1, “b”)]

Task 2.1 (5%). Write the function

zip : int list * string list -> (int * string) list

that performs the transformation of pairing the nth element from the first list with the nth

element of the second list. If your function is applied to a pair of lists of different length, the
length of the returned list should be the minimum of the lengths of the argument lists. You
should ensure that zip is a total function (but you do not need to formally prove this fact).

Task 2.2 (5%). Write the function

unzip : (int * string) list -> int list * string list

unzip does the opposite of zip in the sense that it takes a list of tuples and returns a tuple
of lists, where the first list in the tuple is the list of first elements and the second list is the
list of second elements. You should ensure that unzip is a total function (but you do not
need to formally prove this fact).

Task 2.3 (10%). Prove Theorem 1.

Theorem 1. For all l : (int * string) list, zip(unzip l) ∼= l.

Be sure to use the template for a proof by structural induction on lists ; see the Lecture
4 notes. In your proof, be sure to state when you are using valuability, and explain why
the expressions in question are valuable. You may use totality of zip and unzip in your
explanation but need to cite such uses carefully.

Task 2.4 (4%). Prove or disprove Theorem 2.

Theorem 2. For all l1 : int list and l2 : string list,

unzip(zip (l1,l2)) ∼= (l1,l2)

3



3 Conway’s Lost Cosmological Theorem

3.1 Definition

If l is any list of integers, the look-and-say list of s is obtained by reading off adjacent groups
of identical elements in s. For example, the look-and-say list of

l = [2, 2, 2]

is
[3, 2]

because l is exactly “three twos.”. Similarly, the look-and-say sequence of

l = [1, 2, 2]

is
[1, 1, 2, 2]

because l is exactly “one ones, then two twos.”
We will use the term run to mean a maximal length sublist of a list with all equal

elements. For example,
[1, 1, 1] and [5]

are both runs of the list
[1, 1, 1, 5, 2]

but
[1, 1] and [5, 2] and [1, 2]

are not: [1, 1] is not maximal, [5, 2] has unequal elements, and [1, 2] is not a sublist.
You will now define a function look and say that computes the look-and-say sequence

of its argument using a helper function and a new pattern of recursion.

3.2 Implementation

To help define the look and say function, you will write a helper function lasHelp with the
following spec. lasHelp takes three arguments

• l : int list, the tail of the list

• x : int, the number found in the current run

• acc : int, the number of times the current number has already been seen in the run.

From these arguments, the lasHelp computes the pair (tail, total) where

• tail : int list is the tail of l following the last number equal to x at the front of
the list

4



• total : int is the total length of the current run (i.e., the sum of acc and the length
of the run of numbers equal to x at the front of l).

For example,

lasHelp([1, 2, 3], 4, 1) ∼=([1, 2, 3], 1)

lasHelp([2, 2, 6, 3], 2, 2) ∼=([6, 3], 4)

Task 3.1 (10%). Write the function

lasHelp : int list * int * int -> int list * int

according to the given specification. Note that you can use the function inteq in hw03.sml

to compare integers for equality. Now, write the function

look_and_say : int list -> int list

using this helper function.1

3.3 Cultural Aside

The title of this problem comes from a theorem about the sequence generated by repeated ap-
plications of the “look and say” operation. As look and say has type int list -> int list,
the function can be applied to its own result. For example, if we start with the list of length
one consisting of just the number 1, we get the following first 6 elements of the sequence:

[1]

[1,1]

[2,1]

[1,2,1,1]

[1,1,1,2,2,1]

[3,1,2,2,1,1]

Conway’s theorem states that any element of this sequence will “decay” (by repeated applica-
tions of look and say) into a “compound” made up of combinations of “primitive elements”
(there are 92 of them, plus 2 infinite families) in 24 steps. If you are interested in this se-
quence, you may wish to consult [Conway(1987)] or other papers about the “look and say”
operation.

1 Hint: The recursive call in the inductive case of look and say will sometimes be on a list that is more
than one element shorter. This corresponds to the notion of well-founded recursion discussed in lecture.

5



4 Prefix-Sum

The prefix-sum of a list l is a list s where the ith element of s is the sum of the first i + 1
elements of l. For example,

prefixSum [] ∼= []

prefixSum [1,2,3] ∼= [1,3,6]

prefixSum [5,3,1] ∼= [5,8,9]

Task 4.1 (5%).
Implement the function

prefixSum : int list -> int list

that computes the prefix-sum. You must use the add to each function provided, which adds
an integer to each element of a list, and your solution must be in O(n2) but not in O(n).
This implementation will be simple, but inefficient.

Task 4.2 (5%). Write a recurrence for the work of prefixSum, WprefixSum(n), where n is the
length of the input list. Give a closed form for this recurrence. Argue that your closed form
does indeed indicate that WprefixSum(n) is O(n2).

You may use variables k0, k1, . . . for constants. You should assume that add to each is a
linear time function: add to each l evaluates to a value in kn steps where n is the length
of l and k is some constant; your recurrence should involve the constant k.

In order to compute the prefix sum operation in linear time, we will use the technique of
adding an additional argument: harder problems can be easier.

Task 4.3 (10%). Write the prefixSumHelp function that uses an additional argument to
compute the prefix sum operation in linear time. You must determine what the additional
argument should be. Once you have defined prefixSumHelp, use it to define the function

prefixSumFast : int list -> int list

that computes the prefix sum.

Task 4.4 (5%). Write a recurrence for the work of prefixSumFast, WprefixSumFast(n), where
n is the length of the input list. Give a closed form for this recurrence. Argue that your
closed form does indeed indicate that prefixSumFast is in O(n).

6



5 Sublist

When programming with lists, we often need to work with a segment of a larger list. For
example, one might need to access only the last three elements of a list or only the middle
element. Any such segment is called a sublist.

More formally: if L is any list, we say that S is a sublist of L starting at i if and only if
there exist l1 and l2 such that

l1@S@l2 ∼= L

and
length l1 ∼= i

For example, [1, 2] is a sublist of [1, 2, 3] starting at 0 because

[]@[1, 2]@[3] ∼= [1, 2, 3] and length [] ∼= 0

Task 5.1 (2%). The spec for a function that computes sublists as defined above will have
the form:

For all l:int list, i:int, k:int, if then there
exists an S such that S is the sublist of l starting at i, and

length S ∼= k

, and
sublist(i, k, l) ∼= S

The blank is called the preconditions, and represents assumptions about the input. Fill in
the blank to complete this spec correctly.

Task 5.2 (6%). Implement a function

sublist : int * int * int list -> int list

that meets the spec you gave above.
Because the spec has the form of an implication, in the body of sublist you should

assume that whatever preconditions you required in Task 5.1 are met: if they are not, your
function can do anything you want and still meet its spec!

Note that the definition above implies that we index lists from zero, so

sublist (0, 3, [1,2,3,4]) ∼= [1,2,3]

7



The spec that you completed above is good because it closely mirrors the abstract notion
of a sublist, but bad because it’s very stringent: any code calling sublist must ensure that
the assumptions about the input hold or else it will fail. Since the exact mode of failure is
not documented in the type or in the spec, this can produce behaviour that’s very hard to
debug.

Sometimes, the caller will be able to prove that these assumptions hold because of other
specification-level information. Other times, the information available at compile-time will
not be enough to ensure that these assumptions are met. In these circumstances, you can
use a run-time check to bridge the gap.

Task 5.3 (5%).
Implement a function

sublist check : int * int * int list -> int list

where sublist check(i,k,l) evaluates to the sublist of l starting at i with length k if
possible, or raises an exception explaining why it’s not possible.

sublist check should explicitly check the preconditions you listed in Task 5.1. If all of
the conditions are met, it should call sublist to compute the sublist—do not reimplement
sublist! If any one is not met, it should raise a Fail exception with a helpful error message
describing what’s wrong with the arguments.

If any call that your sublist check makes to sublist can raise an exception or produce
an incorrect result: your solution is broken! This may be because your spec in 5.1 is not
strong enough or you forgot to check a precondition.

Note on testing: your tests for sublist_check should show that it raises the appropriate
exceptions when the preconditions are violated. You should do these tests at the REPL and
then copy them into a comment in your hw03.sml file (otherwise your file will be subject to
a grade penalty for not loading cleanly). We will show you how to regression-test code that
raises exceptions later in the course.

8



6 Subset sum

A multiset is a slight generalization of a set where elements can appear more than once. A
submultiset of a multiset M is a multiset, all of whose elements are elements of M . To avoid
too many awkward sentences, we will use the term subset to mean submultiset.

It follows from the definition that if U is a sub(multi)set of M , and some element x
appears in U k times, then x appears in M at least k times. If M is any finite multiset of
integers, the sum of M is ∑

x∈M

x

With these definitions, the multiset subset sum problem is answering the following question.

Let M be a finite multiset of integers and n a target value. Does there exists any
subset U of M such that the sum of U is exactly n?

Consider the subset sum problem given by

M = {1, 2, 1,−6, 10} n = 4

The answer is “yes” because there exists a subset of M that sums to 4, specifically

U1 = {1, 1, 2}

It’s also yes because
U1 = {−6, 10}

sums to 4 and is a subset of M . However,

U3 = {2, 2}

is not a witness to the solution to this instance. While U3 sums to 4 and each of its elements
occurs in M , it is not a subset of M because 2 occurs only once in M but twice in U2.

Representation You’ll implement three solutions to the subset sum problem. In all three,
we represent multisets of integers as SML values of type int list, where the integers may
be negative. You should think of these lists as just an enumeration of the elements of a
particular multiset. The order that the elements appear in the list is not important.

6.1 Basic solution

Task 6.1 (12%). Write the function

subset_sum : int list * int -> bool

9



that returns true if and only if the input list has a subset that sums to the target number.
As a convention, the empty list [] has a sum of 0. Start from the following useful fact: each
element of the set is in the subset, or it isn’t.2

6.2 NP-completeness and certificates

Subset sum is an interesting problem because it is NP-complete. NP-completeness has to do
with the time-complexity of algorithms, and is covered in more detail in courses like 15-251,
but here’s the basic idea:

• A problem is in P if there is a polynomial-time algorithm for it—that is, an algorithm
one whose work is in O(n), or O(n2), or O(n14), etc.

• A problem is in NP if an affirmative answer can be verified in polynomial time.

Subset sum is in NP. Suppose that you’re presented with a multiset M , another multiset
U , and an integer n. You can easily check that the sum of U is actually n and that U is a
subset of M in polynomial time. This is exactly what the definition of NP requires.

This means we can write an implementation of subset sum which produces a certificate on
affirmative instances of the problem—an easily-checked witness that the computed answer
is correct. Negative instances of the problem—when there is no subset that sums to n—are
not so easily checked.

You will now prove that subset sum is in NP by implementing a certificate-generating
version.

Task 6.2 (8%). Write the function

subset_sum_cert : int list * int -> bool * int list

which, if the input multiset M has a subset that sums to the target number n, returns
(true, U) where U is a subset of M which sums to n. If no such subset exists, it should return
(false, nil).3

NP-Completeness The P = NP problem, which is one of the biggest open problems in
computer science, asks whether there are polynomial-time algorithms for all of the problems
in NP. Right now, there are problems in NP, such as subset sum, for which only exponential-
time algorithms are known. However, subset sum is NP-complete, which means that if you
could solve it in polynomial time, then you could solve all problems in NP in polynomial
time, so P = NP.4

2 Hint: It’s easy to produce correct and unnecessarily complicated functions to compute subset sums.
It’s almost certain that your solution will have O(2n) work, so don’t try to optimize your code too much.
There is a very clean way to write this in a few (5-10ish) elegant lines.

3You’ll note that the empty list returned when a qualifying subset does not exist is superfluous; soon,
we’ll cover a better way to handle these kinds of situations, called option types.

4So: extra credit, several million dollars, and a PhD, for a polynomial time algorithm.

10



6.3 Double Checking

subset_sum_cert produces a certificate C along with its boolean response. Consequently,
we can use it to build trust-worthy code, without knowing anything about the correctness
of subset_sum_cert. This is a process called double-checking.

Suppose subset_sum_cert might be buggy. We can still use it in client code by double-
checking the certificate C. For example, consider some client code that calls subset_sum_cert.
If it’s buggy, it might say false when there is a subset that sums to the target, or it might
say true when there isn’t. But in the latter case, it has to give you a certificate C, which
you can independently check. If this certificate passes the checks, then you know that even
though subset_sum_cert might sometimes give you the wrong answer, in this particular
case, it did the right thing.

Task 6.3 (5%). We can wrap this double-checking up as a function

subset_sum_dc : int list * int -> bool

which is a double-checking version of subset sum. It should call subset_sum_cert on its
input. In the affirmative instances, it should then check the certificate that was produced, and
return true when the certificate is valid, and raise an exception Fail "invalid certificate"

when the certificate fails to verify. For the negative instances, subset_sum_cert does not
return a certificate, so subset_sum_dc should just return false.

For checking the certificate, we have provided functions sum list : int list -> int,
which sums a list, and contained : int list * int list -> bool, which determines
whether its first argument is a submultiset of its second.

Because only the affirmative instances are certified, the best we can say about the be-
havior of subset_sum_dc is the following partial correctness spec:

Theorem 3. If subset sum dc (s,t) ∼= true then there is some subset of s that sums to
t.

This says that subset_sum_dc is correct (with respect to the mathematical definition
of subset-sum) when it returns true. You can prove this without reasoning about the
correctness of subset_sum_cert. Theorem 3 intentionally does not say anything about
what happens when subset sum dc returns false, because we cannot establish correctness
in this case without reasoning about the code of subset_sum_cert.

Task 6.4 (3%). Prove Theorem 3. Your proof should be very short, and should correctly
prove the result even if there is a bug in your implementation of subset sum cert.

As lemmas, you may assume that sum list and contained behave as described above,
and you may assume the following fact about equivalence:

If case e of <branches> is valuable, then e is valuable.

Be sure to cite when you use these lemmas.

11



References

[Conway(1987)] J. Conway. The weird and wonderful chemistry of audioactive decay. In T. Cover
and B. Gopinath, editors, Open Problems in Communication and Computation, pages 173–188.
Springer-Verlag, 1987.

12


	Introduction
	Getting The Homework Assignment
	Submitting The Homework Assignment
	Methodology
	Due Date

	Zippidy Doo Da
	Conway's Lost Cosmological Theorem
	Definition
	Implementation
	Cultural Aside

	Prefix-Sum
	Sublist
	Subset sum
	Basic solution
	NP-completeness and certificates
	Double Checking


