15-150 Spring 2012
Homework 2

Out: Tuesday, 24 January
Due: Wednesday, 1 February, 0900

1 Introduction

In this assignment, you will go over some of the basic concepts we want you to learn in this
course, including defining recursive functions and proving their correctness. We expect you
to follow the five-step methodology for defining a function, as shown in class.

1.1 Getting The Homework Assignment

The starter files for the homework assignment have been distributed through our git repos-
itory as usual.

1.2 Submitting The Homework Assignment

To submit your solutions, place your hw02.pdf and modified hw02.sml files in your handin
directory on AFS:

/afs/andrew.cmu.edu/course/15/150/handin/<yourandrewid>/hw02/

Your files must be named exactly hwO2.pdf and hw02.sml. After you place your files in this
directory, run the check script located at

/afs/andrew.cmu.edu/course/15/150/bin/check/02/check.pl

then fix any and all errors it reports.

Remember that the check script is not a grading script—a timely submission that passes
the check script will be graded, but will not necessarily receive full credit.

Also remember that your written solutions must be submitted in PDF format—we do
not accept MS Word files.

Your hwO2.sml file must contain all the code that you want to have graded for this
assignment and compile cleanly. If you have a function that happens to be named the same
as one of the required functions but does not have the required type, it will not be graded.

1.3 Due Date

This assignment is due on Wednesday, 1 February 2012, at 09:00 EST. Remember that this
deadline is final and that we do not accept late submissions.

2 Basics

The built-in function
real : int -> real

returns the real value corresponding to a given int input; for example, real 4 evaluates
to 4.0. Conversely, the built-in function

trunc : real -> int

returns the integral part (intuitively, the digits before the decimal point) of its input; for
example, trunc 2.7 evaluates to 2. Feel free to try these functions out in smlnj.

Once you understand these functions, you should solve the questions in this section in
your head, without first trying them out in smlnj. The type of mental reasoning involved in
answering these questions should become second nature.

2.1 Scope

Task 2.1 (3%). Consider the following code fragment:

fun square (x : real) : real = x * x
fun square (x : int) : int = x * X
val z : real = square 7.0

Does this typecheck? Briefly explain why or why not.

In lab, we went over SML’s syntax for let-bindings. It is possible to write val declarations
in the middle of other expressions with the syntax let ... in ... end.
See the end of the Lecture 3 notes for more details.

Task 2.2 (8%). Consider the following code fragment (the line-numbers are for reference,
not part of the code itself):

(1) wval x : int = 12

(2)

(3) fun assemble (x : int, y : real) : int =

(4) let val q : real = let val x : int = 3

(5) val p : real = 5.2 * (real x)
(6) val y : real = p * y

(7 val x : int = 123

(8) inp+y

(9) end

(10) in

(11) x + (trunc q)
(12) end
(13)

(14) wval z = assemble (x, 2.0)

a) What gets substituted for the variable x in line (5)? Briefly explain why.

(a)

(b) What gets substituted for the variable p in line (8)7 Briefly explain why.
(c) What gets substituted for the variable x in line (11)7 Briefly explain why.
)

(d) What value does the expression assemble (x, 2.0) evaluate to in line (14)?
2.2 Evaluation

Task 2.3 (6%). Consider the following code fragment:

fun square (x : int) : int = x * x
val z : int =

let

val x : real = real (square 6)
in

3 + (trunc x)
end

Provide a step-by-step sequential evaluation trace of the right-hand-side of the declara-
tion of z (that is, let val x : real = real (square 6) in 3 + (trunc x) end). You
may assume that, for values i : int, the expression real i evaluates in one step to the
corresponding real value, and similarly for trunc r given a value r : real.

2.3 Equivalence

Recall the fact function from Lecture 3.
Task 2.4 (4%). Define
fun f (x : int) : int = f x

Are the following two expressions equivalent?

2

fact (~ 1) = f 10

Explain why or why not.

Task 2.5 (4%). Prove the following equivalence:

fact(fact 3) = (fact 3) * fact((fact 3) - 1)

Be careful: because ML is call-by-value, you can only expand a function definition when
a function is applied to a value. For this problem, you may use only the rules of equivalence
from Lecture 3 (not the valuability-based rules covered in Lecture 4—this task is asking you
to prove an instance of the valuability rules, to get a sense for why they are true).

3 Recursive Functions

3.1 Multiplication
In lab, we defined a function
add : int * int -> int

that implements a recursive definition of addition on the natural numbers. It is also possible
to define multiplication in a similar way, in terms of addition.

Task 3.1 (5%). In hw02.sml, write the function
mult : int * int -> int

such that mult (m, n) recursively calculates the product of m and n, for any two natural
numbers m and n. Your implementation may use the function add mentioned above and -
(subtraction), but it may not use + or *.

3.2 Harmonic Series

In mathematics, the harmonic series is the series

il - 1+1+1+1+1+
—ra 2 3 4 5 7

=1

Although this series ultimately diverges, it does so very slowly. The partial sum of the
first n numbers in this series is called the nth harmonic number, H,:

— 1
H,=S "=
i=1
Note that, by definition, Y "~ f(i) is 0 if n < m.

Task 3.2 (3%). What is Hy? Give a few more examples of elements in the harmonic series.

Task 3.3 (7%). In hw02.sml, write and document the function

5

harmonic : int -> real

such that harmonic n recursively calculates H,,, the nth harmonic number, for any natural
number n. For this problem you may use any functions or operators you wish. In particular
you may need to use the built-in function real discussed earlier in this assignment.

Note: it is somewhat fragile to compare floating point numbers for equality, because
computations on reals are prone to rounding errors. In many circumstances, two float-
ing point numbers that you think should be equal will actually be slightly different. For
this reason, SML does not allow pattern-matching on floating point numbers, analogous to
val 120 = fact 5. Instead, you need to use an explicit equality test:

val true = Real.==(harmonic 1, 1.0)

Methodologically, it is usually better to check that two floats differ by a small €, rather
than checking for exact equality with Real.==. However, Real .== should suffice for writing
tests in this assignment. That said, if you encounter an unexpected failing test, it may be
because Real .== does exact floating point comparison, and your calculation does not come
out to exactly the value you anticipate.

3.2.1 The Alternating Harmonic Series
A related sequence is the alternating harmonic series, in which every other term has negative

sign,

(1) 1 1 1 1
R [T
2 i 237175

[e.e]
i=1
For any natural number n, the partial sums of the series are the alternating harmonic
numbers I,,:
n ,
(_1)z+1
I, = —_—
=y
=1
Unlike the harmonic series, the alternating harmonic series converges; as n approaches
infinity, I,, approaches In(2) (the natural log of 2).

Task 3.4 (3%). What is [,? Give a few more examples of elements in the alternating
harmonic series.

There are multiple ways of calculating the alternating harmonic numbers, depending on
how one determines the sign of the terms.

Version 1 The most straightforward is, at each step, to check whether the index of the
term is even or odd, and choose the sign appropriately.

Task 3.5 (6%). In hw02.sml, write and document the function

6

altharmonic : int -> real

such that altharmonic n recursively calculates [,,, determining at each step whether the
term being added is positive or negative. You will need to use real : int -> real and
also evenP and/or oddP, both of type int -> bool, provided for you in hw02.sml.

Version 2 This method of calculating the alternating harmonic numbers is rather ineffi-
cient because we defined evenP and oddP recursively, taking time proportional to the input
value n. Since one is invoked at each step, executing altharmonic will take a number of
steps that is quadratic in the input number.

There is a faster method:! We can pass along information that tells us whether n is even
or odd. To do this, we need a helper function

altharmonicHelper : int * bool -> real

altharmonicHelper (n : int, even : bool) takes two arguments, and recursively cal-
culates I,,, assuming that even is true iff n is even and false iff n is odd.

Task 3.6 (6%). In hw02.sml, write the two-argument function
altharmonicHelper : int * bool -> real

and then write
altharmonic2 : int -> real

using altharmonicHelper, filling out documentation for both of them. You may find the
function

not : bool -> bool

to be helpful for altharmonicHelper. Executing altharmonic2 should take a number of
steps that is linear in the input number.

3.3 Modular Arithmetic

We have already implemented addition and multiplication as recursive algorithms, but what
about subtraction and division? Subtraction is (mostly) straightforward, but division is a
little bit trickier. For example, % isn’t a whole number — you could claim that the answer
is 2, but you still have a remainder of 2 left over since 8 isn’t exactly a multiple of 3. This
means that in order to write a version of division that does not lose any information, we

must return two things: the quotient, and the remainder of the division.

!There is another faster method: use integer modular arithmetic to implement evenP in constant time.
However, the method we suggest here would work even for non-fixed-size integers, where mod is not constant
time. Moreover, it gets you to practice writing a function whose argument is a pair.

Fortunately, this is very straighforward to do! Just as we can write functions that take
two arguments, we can write functions that evaluate to a pair of results. See the geom
example from lab/the end of the Lecture 3 notes.

The algorithm is fairly simple: subtract denom from num until num is less than denom,
at which point num is the remainder, and the number of total subtractions is the quotient.
(Note that this is somewhat dual to multiplication!)

Task 3.7 (10%). Write the function
divmod : int * int -> int * int

in hwO2.sml.
Your function should meet the following spec:

For all natural numbers n and d such that d > 0, there exist natural numbers q
and r such that divmod (n, d) = (q, r) andqd + r = nand r < d.

If n is not a natural number or d is not positive, your implementation may have any behavior
you like.

Integer division and modular arithmetic are built in to ML (div and mod), but you may
not use them for this problem. The point is to practice recursively computing a pair.

Sum Digits Having defined divmod, we can proceed to write some functions that do
interesting things with modular arithmetic. For example, it is fairly straightforward to
compute the sum of all the digits in a base 10 representation of a number. First, check to
see if the number is zero. If it isn’t, add the remainder of dividing the number by 10 to the
result of recursing on the number divided by 10. This adds the least significant digit to the
total, then “chops it oft” of the end and recurses on the result, ending when the number has
been completely truncated. For example, applying this algorithm to 123 adds 3 to the sum
of the digits in 12, which adds 2 to the sum of the digits in 1, which is just one, so the total
result is 6.

Of course, this can also be generalized to an arbitrary base by dividing by the base b
instead of 10 each time. Thus, we can write a function in SML

sum_digits : int * int -> int

such that for any natural numbers n and b (where b > 1) sum digits (n, b) evaluates to
the sum of the digits in the base b representation of n.

Task 3.8 (10%). Write the function
sum_digits : int * int -> int

in hw02.sml.

4 Induction

4.1 Correctness of Double
Recall the double function from lecture:

fun double (n : int) : int =
case n of
0=>0
| _ => 2 + (double (n - 1))

Task 4.1 (10%). In this problem, you will prove the following specification:
Theorem 1. For all natural numbers n, double n = 2*n

This is intentionally a very simple theorem about a very simple piece of code. The
goal of this problem is for you to practice getting the form of an inductive proof exactly
right. Your proof must follow the template for structural induction on a natural
number; see the Lecture 3 notes. Your equality reasoning should include each step of
evaluation necessary to prove the equivalence, analogously to the proof of correctness of exp
in the notes. You may assume basic properties of arithmetic (associativity, distributivity of
% over +, commutativity, etc.).

4.2 Correctness of Summorial

Task 4.2 (15%). As you may recall, the closed form for the sum of the natural numbers

from 0 to n is
" n(n+1)
0-+... = = —"
+ +n ;z 5

We will use this closed form to prove the correctness of the summ function that you imple-
mented in lab:

fun summ (n : int) : int =
case n of
0=>20
| _=>n+ (summ (n - 1))

Theorem 2. For all natural numbers n, summ n = (n*(n+1)) div 2.

The proof is by induction on the natural number n. Follow the same template as above.
Your equality reasoning should include each individual step of evaluation necessary to prove
the equivalence.

In the inductive case, you will need to do some algebraic manipulation. Break this out as
a separate lemma, and prove it; you may assume basic properties of arithmetic (associativity,
distributivity of % over +, commutativity, etc.).

