Lecture 21
Typesin C

15-122: Principles of Imperative Computation (Fall 2018)
Frank Pfenning, Rob Simmons, Iliano Cervesato

Previous lectures have emphasized the things we lost by going to C:

e Many operations that would safely cause an error in C0, like derefer-
encing NULL or reading outside the bounds of an array, are undefined
in C — we cannot predict or reason about what happens when we
have undefined behaviors.

e It is not possible to capture or check the length of C arrays.

e In C, pointers and arrays are the same — and we declare them like
pointers, writing int *i.

e The CO types string, charx and char[] are all represented as point-
ers to char in C.

e Cis not garbage collected, so we have to explicitly say when we ex-
pect memory to be freed, which can easily lead to memory leaks.

In this lecture, we will endeavor to look on the bright side and explore some
of the new things that C gives us. But remember: with great power comes
great responsibility. Today we will look at the different ways that C rep-
resents numbers and the general, though mostly implementation-defined,
properties of these numbers that we frequently count on.

1 Numbers in C

In addition to the undefined behavior resulting from bad memory access
(dereferencing a NULL pointer or reading outside of an array), there are
other undefined behaviors in C. In particular:

LECTURE NOTES © Carnegie Mellon University 2018

Lecture 21: Types in C 2

e Division by zero is undefined. (In CO, this always causes an excep-
tion.)

e Shifting left or right by negative numbers or by too-large a number is
undefined. (In CO, this always causes an exception.)

o Arithmetic overflow for signed types like int is undefined. (In CO,
this is defined as modular arithmetic.)

This has some strange effects. If x and y are signed integers, then the
expressions x < x+1 and x/y == x/y are either true or undefined (due
to signed arithmetic or overflow, respectively). So the compiler is allowed
to pretend that these expressions are just true all the time. The compiler
is also allowed to behave the same way CO does, returning false in the
first case when x is the maximum integer and raising an exception in the
second case when y is 0. The compiler is also free to check for signed inte-
ger overflow and division by zero and start playing Rick Astley’s “Never
Gonna Give You Up” if either occurs, though this is last option is unlikely
in practice. Undefined behavior is unpredictable — it can and does change
dramatically between different computers, different compilers, and even
different versions of the same compiler.

The fact that signed integer overflow is undefined is particularly an-
noying. A check like (x + 1 > x), which was a perfectly acceptable way
to check that x was not int_max() in CO0, is now a check that the compiler
is allowed to optimize to just true, because the result of this expression, in
C, is either true or undefined.

There are two ways of coping with signed integer overflow being unde-
fined. One option is to use unsigned types, which are required to obey the
laws of modular arithmetic: unsigned int instead of int. As an example,
consider a simple function to compute Fibonacci numbers. There are even
faster ways of doing this, but what we do here is to allocate an array on
the stack, fill it with successive Fibonacci numbers, and finally return the
desired value at the end.

1 unsigned int fib(unsigned int n) {

> unsigned int A[n+2]; /* stack-allocated array A x/
s A[O] = 0;

+ A[1l] = 1;

5 for (unsigned int i = 0; i <= n-2; i++)

6 Ali+2] = A[i] + A[i+1];

7 return A[n]; /* deallocates A just before actual return x/

Lecture 21: Types in C 3

There’s another solution, particular to the compiler, gcc, that we usu-
ally use to compile C programs. This compiler (as well as other modern C
compilers like clang), has a flag - fwrapv. When we compile with - fwrapv,
then the compiler promises it will treat overflow from addition and multi-
plication as signed two’s complement modular arithmetic, exactly like CO
does.

2 Implementation-defined Behavior

In addition to int, which is a signed type, there are the signed types short
and long, and unsigned versions of each of these types — short is smaller
than int and long is bigger. The numeric type char is smaller than short
and always takes up one byte. The maximum and minimum values of these
numeric types can be found in the standard header file <limits.h>.

C, annoyingly, does not define whether char is signed or unsigned. A
signed char is definitely signed, a unsigned char is unsigned. The type
char can be either signed or unsigned — this is implementation defined.

It is often very difficult to say useful and precise things about the C
programming language, because many of the features of C that we have to
rely on in practice are not part of the C standard. Instead, they are things
that the C standard leaves up to the implementation — implementation de-
fined behaviors. Implementation-defined behaviors make it quite difficult
to write code on one computer that will compile and run on another com-
puter, because the other compiler may make completely different choices
about implementation-defined behaviors.

The first example we have seen is that, while a char is always exactly
one byte, we don’t know whether it is signed or unsigned — whether it can
represent integer values in the range [—128,128) or integer values in the
range [0, 256). And it is even worse, because a byte can be more than 8 bits!
If you really want to mean “8 bits,” you should say octet.

In this class we are going to rely on a number of implementation-defined
behaviors. For example, you can always assume that bytes are 8 bits on the
computers we're using for this class in this decade. When it is important
to not rely on integer sizes being implementation-defined, it is possible to
use the types defined in <stdint.h>, which defines signed and unsigned
types of specific sizes. In the systems that you are going to use for program-
ming, you can reasonably expect a common set of implementation-defined
behaviors: char will be an 8-bit integer (maybe signed, maybe unsigned)
and so on.

Lecture 21: Types in C 4

This chart describes how the <stdint.h> types match up to the standard
C types in most modern C compilers:

Signed Unsigned
C stdint.h stdint.h C
signed char int8_t uint8_t unsigned char
short intle_t uintl6_t wunsigned short
int int32_t uint32_t wunsigned int
long inted_t uint64_t wunsigned long

However, please remember that we cannot count on this correspondence
behavior in all C compilers!

There is another crucial numerical type: size_t, is the type used rep-
resent memory sizes and array indices. The sizeof(ty) operation in C
actually returns just the size of a type in bytes, so malloc and xmalloc
actually take one argument of type size_t and calloc and xcalloc take
two arguments of type size_t. As we approach the third decade of the
21st century, we're increasingly using 64-bit systems and not dealing with
32-bit systems anymore. On 32-bit systems, size_t is usually 4-byte, 32-
bit unsigned integer. We now usually expect size_t to be a 64-bit, 8-byte
unsigned integer.

3 Casting Between Numeric Types

Now that we’ve introduced a bunch of different integer types, we need to
see how to work with multiple integer types in the same program.

Imagine we have the hexadecimal value 0xFO — represented as a se-
quence of bits as 11110000 — stored in an unsigned char, and we want to
turn that value into an int. (This is a problem you will actually encounter
later in this semester.) We can cast this character value to an integer value
by writing (int)e.

unsigned char c = 0xFO;
int i = (int)c;

However, what will the value of this integer be? You can run this code and
find out on your own, but the important thing to realize is that it’s not clear,
because there are two different stories we can tell.

In the first story, we start by transforming the unsigned char into an
unsigned int. When we cast from a small unsigned quantity to a large un-
signed quantity, we can be sure that the value will be preserved. Because

Lecture 21: Types in C 5

the bits 11110000 are understood as the unsigned integer 240, the unsigned
int will also be 240, written in hexadecimal as 0x000000F0. Then, when
we cast from an unsigned int to a signed int, we can expect the bits to re-
main the same (though this is really implementation defined), and because
the interpretation of signed integers is two’s-complement (also implemen-
tation defined) the final value will be 240.

In the second story, we first transform the unsigned char into a signed
char. Again, the implementation-defined behavior we expect is that we
will interpret the result as an 8-bit signed two’s-complement quantity, mean-
ing that 0xFO is understood as —16. Then, when we cast from the small
signed quantity (signed char) to a large signed quantity (int), we know
the quantity —16 will be preserved, meaning that we will end up with a
signed integer written in hexadecimal as O©xFFFFFFFO. In order to preserve
the value as we go from a small to a large signed quantity, all we have to
do is use sign extension — copy the high-order bit into all the new spaces.

0xFO
(as a uint8_t: 240)

presewwwe bit pattern

0x000000F0 0xFO
(as an uint32_t: 240) (asanint8_t:-16)
preserve bit pattern preserve value
0x000000F0 OXFEFFEEFEEO
(as anint32_t: 240) (asanint32_t:-16)

The order in which we do these two steps matters! Therefore, if we
want to be clear about what result we want, we should cast in smaller steps
to be explicit about how we want our casts to work:

unsigned char c = 0xFO;

int il = (int) (unsigned int) c;
int i2 = (int)(signed char) c;
assert(il == 240);

assert(i2 == -16);

The C standard does define which of these two things will happen when
you cast directly from unsigned char to int. However, for the purposes

Lecture 21: Types in C 6

of this class, where we're trying to teach you enough C to write clear and
correct programs, it’s worth obeying the following rules:

e Never cast between signed and unsigned types of different sizes. Only
cast between signed and unsigned types with the same size (imple-
mentation defined to preserve bits) and between small and large types
that are either both signed or both unsigned.

e When you cast from a large signed (or unsigned) type to a small
signed (or unsigned) type, make sure that the type you're casting to
can represent the number. (So, for instance, you can cast the int 17
to an signed char, but don’t cast the int 1000 to a signed char, be-
cause a signed char can only represent numbers between -128 and
127, inclusive.

e When you add, subtract, multiply, divide, compare, or do bitwise
operations involving multiple variables, it’s best to make sure that
all the numbers you're working with have the same size and same
signedness. One important “gotcha” here: if you just write the num-
ber 4, it’s treated as an int by default, so writing

int64_t 1 = 1 << 40;

will actually be undefined behavior, because 1 is (implementation-
defined to be) a 32-bit quantity that can only be shifted by numbers
between 0 and 31, inclusive. The fix, in this situation, is to write:

intéd_t i = 1;
1 =1 << 40;

4 Other Types In C

C introduces a number of other types as well that we didn’t have in CO. In
particular, many C programs use enum types, union types, and the float-
ing point types, float and double, which are used to represent fractional
numbers like 0.25. You'll learn much more about these other C types in
later courses, like 15-213, but here are the basics.

4.1 Floating Point

The C type float allows writing numbers such as 0.1 and 3.14159265 as
well as 2.2035 x 10727 (entered as 2.2035E-27) that have a fractional com-
ponent. It also allows writing very large numbers such as 10%° that are

Lecture 21: Types in C 7

not representable as int’s. float provides floating point numbers as a way
to work with numbers other than integers, in particular (some) rational
numbers. The size of a float is implementation-defined, although it is
typically 32 bits in modern computers. Those 32 bits is all that is available
to represent floating point numbers — the same as int’s — but the range
these numbers are drawn from is much wider: 10%* and —10?° can both be
entered as float’s although much larger than INT_MAX and much smaller
than INT_MIN respectively, and so is 1072, What gives? Precision.

The following simple program divides 10?2 by 10'° and multiplies the
outcome by 10'°. We expect the final result to be 10%°.

void main() {
float x = 10E20;
float y = 10E10;
printf("sf\n", (x/y)*y);
}

Instead, it outputs 999999949672133165056.000000 — almost 10%° but
not quite.

C offers another type for floating point numbers, double, which stands
for double precision (its size is again implementation-defined and typically
64 bits in current hardware). The above example works as expected if we
replace float with double, but a similar example which uses bigger num-
bers will suffer from the same problem: double precision is not infinite
precision.

Precision loss during calculations, as just witnessed, makes it all but
impossible to reason about programs that use floating point numbers. This
is why float was left out of CO.

Here’s another example:

float x = 0.1;

for (float res = 0; res I=5.0;) {
res += x;
printf("res = %f\n", res);

}

printf("Done!\n");

We would expect the loop to run some 50 times, then exit and print Done!.
Instead, it keeps running, printing ever larger values of res:

a.out
res 0.100000
res 0.200000

Lecture 21: Types in C 8

[elided]
res = 2.600000
res = 2.700000
res = 2.799999
res = 2.899999

[elided]
res = 4.999998
res = 5.099998

[elided]
res = 8.799997
res = 8.899998

[elided]

After a few iterations, the value of res starts deviating from what we expect
— a single decimal digit followed by zeros — and eventually passes 5.0
because it is never equal to that value. How is this possible with simple
numbers like 0.1 and 5.0? These numbers, as we entered them in the
program, are in decimal. The compiler automatically converts them into
binary using a very similar procedure as what we saw for integers. Take
0.1. We obtain the fractional part (or mantissa) by repeatedly multiplying
this number by 2 and harvesting the digit to the right of the decimal point
until we get 0.0:

0.1 x 2 = 0.2 yields 0
02 x 2 = 04 yields 0
04 x 2 = 08 yields 0
08 x 2 = 1.6 yields 1 subtractl
06 x 2 = 1.2 yields 1 subtractl
0.2 x 2 0

= 0.4 yields

Notice that we have seen 0.2 before, and therefore the process repeats ... infinitely.
The number 0.0, at which point we would stop, never emerges. What is
happening is that, while 0.1 has a finite mantissa in decimal (just one digit
after the decimal point), it has an infinite mantissa in binary: 0.1y¢ is a
periodic number in binary — 0.00011,. This means that a precise repre-
sentation as a binary mantissa cannot be achieved with any fixed number
of bits. Thus the value of x above is an approximation of 0.1 rather than
exactly this number. It is printed out as 0.100000 thanks to rounding but,
as we keep on adding it to itself with “res += x” errors accumulate since
we are working with an approximation of 0.1, and these errors eventually
manifest when printing res.

Lecture 21: Types in C 9

4.2 Union and enum types

As a way to introduce some additional features of C, consider a type of
trees that carry their data in their leaves rather than in the inner nodes
(we call them leafy trees and they are at the basis of data structures used in
the implementation of database management systems and in other areas of
computer science). A leafy tree can be a leaf carrying a value, it can be an
inner node with no value but left and right children, it can also be empty
which contains neither a value nor children.

Based on the fragment of C we know so far, we would use the following
type to define the nodes of a leafy tree with integer values:

typedef struct ltree leafytree;
struct ltree {

int nodetype;

int data;

leafytree xleft;

leafytree *xright;
b

We use the field nodetype to distinguish the type of the node (a leaf, an
inner node, or empty'). This representation wastes memory: inner nodes
do not make use of the data field, while left and right are meaningless
for a leaf, and furthermore all 3 for go unused for the empty tree. As we
will see shortly, C provides a mechanism to mitigate this problem.

Before examining it, let’s go back to nodetype: we need to pick three
values to denote the three types of nodes, but we use the space for an entire
int for them — more waste. C provides enum types as a way to shield the
programmer both from picking constants whose values are to all effects
irrelevant as long as they are distinct and in deciding exactly how much
memory to allocate. In our example, this is done through the declaration

enum nodetype { INNER, LEAF, EMPTY };

From now on, we can use the mnemonic constants INNER, LEAF and EMPTY
as type indicators for our various nodes.

Union types provide a way to view an area of memory as having more
than one type. Here, the memory associated with a node needs to be
viewed either as an int (for leaves) or as a pair of pointers (for inner nodes).
We can do so using the following declarations:

! An alternative is to represent the empty leafy tree as NULL. We refrain from doing so
to make this example more interesting.

Lecture 21: Types in C 10

typedef struct ltree leafytree;

struct innernode { // type of an inner node
leafytree xleft;
leafytree x*right;

b

union nodecontent { // contents of a non-empty node:
int data; // EITHER an int
struct innernode node; // OR and inner node

b

struct ltree {
enum nodetype type;
union nodecontent content;

}

Here, struct innernode packages the two pointers needed for inner nodes.
The type union nodecontent can contain either the integer data or the
value node of type struct innernode — but not both. The compiler will
decide how to organize the memory for this union type (on modern hard-
ware, probably 16 byte viewed either as two 8-byte pointers or a 4-byte
int and 12 unused bytes). Lastly, the definition of struct 1ltree contains
the field type of enum type enum nodetype defined earlier, and the field
content of union type union nodecontent.
We define an actual leafy tree as in the following example:

leafytree *T = malloc(sizeof(leafytree));

T->type = INNER;

T->content.node.left = malloc(sizeof(leafytree));
T->content.node.left->type = EMPTY;
T->content.node.right = malloc(sizeof(leafytree));
T->content.node.right->type = LEAF;
T->content.node.right->content.data = 42;

Note that the type fields are assigned the symbolic constants in our enum
type. Notice also that we access the alternatives of a union type using the
dot notation, as in T->content.node. left. It is left to the discipline of the
programmer to use these fields consistently, for instance not to access the
data component of an INNER node.

Before we are done with this example, let’s introduce a useful construct
of C, especially in the presence of enum type definitions: the switch state-
ment. The following recursive function adds all the values stored in (the
leaves of) a leafy tree:

Lecture 21: Types in C 11

int add_tree(leafytree *T) {
int n = 0;
switch (T->type) {
case INNER:
n += add_tree(T->content.node.left);
n += add_tree(T->content.node.right);
break;

case LEAF:
n = T->content.data;
break;

default:
n=0;

return n;

}

The construct switch discriminates on the value of T->type, jumping to
the appropriate case block. If a case block is not given for a value, the
execution proceeds to the default block which is always the last (although
a programmer may decide to omit it). Each block except the last typically
needs to end with a break statement, otherwise the execution will proceed
with the next block rather than exiting the switch statement.

	Numbers in C
	Implementation-defined Behavior
	Casting Between Numeric Types
	Other Types In C
	Floating Point
	Union and enum types

