
Lecture 3
Arrays

15-122: Principles of Imperative Computation (Fall 2018)
Frank Pfenning, André Platzer

So far we have seen how to process primitive data like integers in impera-
tive programs. That is useful, but certainly not sufficient to handle bigger
amounts of data. In many cases we need aggregate data structures which
contain other data. A common data structure, in particular in imperative
programming languages, is that of an array. An array can be used to store
and process a fixed number of data elements that all have the same type.

We will also take a first detailed look at the issue of program safety.
A program is safe if it will execute without exceptional conditions which
would cause its execution to abort. So far, only division and modulus are
potentially unsafe operations, since division or modulus by 0 is defined
as a runtime error.1 Trying to access an array element for which no space
has been allocated is a second form of runtime error. Array accesses are
therefore potentially unsafe operations and must be proved safe.

With respect to our learning goals we will look at the following notions.

Computational Thinking: Developing contracts that establish the safety
of imperative programs.

Developing and evaluating proofs of the safety of code with con-
tracts.

Programming: Identifying, describing, and effectively using arrays and
for-loops.

1 Using Arrays

When t is a type, then t[] is the type of an array with elements of type t.
Note that t is arbitrary: we can have an array of integers (int[]), and an

1Another runtime error is for division or modulus of the smallest integer by −1.

LECTURE NOTES c© Carnegie Mellon University 2018



Lecture 3: Arrays 2

array of booleans (bool[]) or an array of arrays of characters (char[][]).
This syntax for the type of arrays is like Java, but is a minor departure from
C, as we will see later in class.

Each array has a fixed size, and it must be explicitly allocated using the
expression alloc_array(t, n). Here t is the type of the array elements,
and n is their number. With this operation, C0 will reserve a piece of mem-
ory with n elements, each having type t. Let’s try in coin:

% coin
C0 interpreter (coin) 0.3.3 ’Nickel’
Type ‘#help’ for help or ‘#quit’ to exit.
--> int[] A = alloc_array(int, 10);
A is 0xECE2FFF0 (int[] with 10 elements)
-->

The result may be surprising: A is an array of integers with 10 elements
(obvious), but what does it mean to say A is 0xECE2FFF0 here? As we
discussed in the lecture on integers, variables can only hold values of a
small fixed size, the word size of the machine. An array of 10 integers would
be 10 times this size, so we cannot hold it directly in the variable A. Instead,
the variable A holds the address in memory where the actual array elements
are stored. In this case, the address happens to be 0xECE2FFF0 (incidentally
presented in hexadecimal notation), but there is no guarantee that the next
time you run coin you will get the same address. Fortunately, this is okay
because you cannot actually ever do anything directly with this address as
a number and never need to either. Instead you access the array elements
using the syntax A[i] where 0 ≤ i < n, where n is the length of the array.
That is, A[0] will give you element 0 of the array, A[1] will be element 1,
and so on. We say that arrays are zero-based because elements are numbered
starting at 0. For example:

--> A[0];
0 (int)
--> A[1];
0 (int)
--> A[2];
0 (int)
--> A[10];
Error: accessing element 10 in 10-element array
Last position: <stdio>:1.1-1.6
--> A[-1];
Error: accessing negative element in 10-element array



Lecture 3: Arrays 3

Last position: <stdio>:1.1-1.6
-->

We notice that after allocating the array, all elements appear to be 0. This
is guaranteed by the implementation, which initializes all array elements
to a default value which depends on the type. The default value of type
int is 0. Generally speaking, one should try to avoid exploiting implicit
initialization because for a reader of the program it may not be clear if the
initial values are important or not.

We also observe that trying to access an array element not in the spec-
ified range of the array will lead to an error. In this example, the valid ac-
cesses are A[0], A[1], . . ., A[9] (which comes to 10 elements); everything
else is illegal. And every other attempt to access the contents of the array
would not make much sense, because the array has been allocated to hold
10 elements. How could we ever meaningfully ask what its element num-
ber 20 is if it has only 10? Nor would it make sense to ask A[-4]. In both
cases, coin and cc0 will give you an error message telling you that you
have accessed the array outside the bounds. While an error is guaranteed
in C0, in C no such guarantee is made. Accessing an array element that has
not been allocated leads to undefined behavior and, in principle, anything
could happen. This is highly problematic because implementations typi-
cally choose to just read from or write to the memory location where some
element would be if it had been allocated. Since it has not been, some other
unpredictable memory location may be altered, which permits infamous
buffer overflow attacks which may compromise your machines.

How do we change an element of an array? We can use it on the left-
hand side of an assignment. We can set A[i] = e; as long as e is an ex-
pression of the right type for an array element. For example:

--> A[0] = 5; A[1] = 10; A[2] = 20;
A[0] is 5 (int)
A[1] is 10 (int)
A[2] is 20 (int)
-->

After these assignments, the contents of memory might be displayed as
follows, where A = 0xECE2FFF0:



Lecture 3: Arrays 4

Recall that an assignment (like A[0] = 5;) is a statement and as such
has an effect, but no value. coin will print back the effect of the assign-
ment. Here we have given three statements together, so all three effects are
shown. Again, exceeding the array bounds will result in an error message
and the program aborts, because it does not make sense to store data in an
array at a position that is outside the size of that array.

--> A[10] = 100;
Error: accessing element 10 in 10-element array
Last position: <stdio>:1.1-1.6
-->

2 Using For-Loops to Traverse Arrays

A common pattern of access and traversal of arrays is for-loops, where an
index i is counted up from 0 to the length of the array. To continue the
example above, we can assign i3 to the i-th element of the array as follows:

--> for (int i = 0; i < 10; i++)
... A[i] = i * i * i;
--> A[6];
216 (int)
-->

Characteristically, the exit condition of the loop tests for i < n where i
is the array index and n is the length of the array (here 10).

After we type in the first line (the header of the for-loop), coin responds
with the prompt ... instead of -->. This indicates that the expression or
statement it has parsed so far is incomplete. We complete it by supplying
the body of the loop, the assignment A[i] = i * i * i;. Note that no
assignment effect is printed. This is because the assignment is part of a
loop. In general, coin will only print effects of top-level statements such
as assignments, because when a complicated program is executed, a huge
number of effects could be taking place.



Lecture 3: Arrays 5

3 Specifications for Arrays

When we use loops to traverse arrays, we need to make sure that all the ar-
ray accesses are in bounds. In many cases this is evident, but it can be tricky
in particular if we have two-dimensional data (for example, images). As an
aid to this reasoning, we state an explicit loop invariant which expresses
what will be true on every iteration of the loop.

To illustrate arrays, we will expand on our previous example, filling an
array with cubes.

1 int[] cubes(int n) {
2 int[] A = alloc_array(int, n);
3

4 for (int i = 0; i < n; i++) {
5 A[i] = i * i * i;
6 }
7

8 return A;
9 }

This looks straightforward. Is there a problem with the code or will it run
correctly? In order to understand whether this function works correctly, we
systematically develop a specification for it.

The first problem is the safety of the call to alloc_array, because allo-
cating an array will fail if we ask for a negative number of elements. Since
the number of elements we ask for in alloc_array(int, n) is n, and n is
a parameter passed to the function, we need to add n ≥ 0 into the precon-
dition of the function.

For referring to the length of an array, C0 contracts have a special func-
tion \length(A) that stands for the number of elements in the array A. Just
like the \result variable, the function \length is part of the contract lan-
guage and cannot be used in C0 program code. Its purpose is to be used in
contracts to specify the requirements and behavior of a program. For the
cubes function, we want to specify the post-condition that the length of the
array that the function returns is n.

1 int[] cubes(int n)
2 //@requires n >= 0;
3 //@ensures \length(\result) == n;
4 {
5 int[] A = alloc_array(int, n);
6



Lecture 3: Arrays 6

7 for (int i = 0; i < n; i++) {
8 A[i] = i * i * i;
9 }

10

11 return A;
12 }

4 Loop Invariants for Arrays

By writing specifications, we should convince ourselves that all array ac-
cesses will be within the bounds. In the loop, we access A[i], which would
raise an error if i were negative or greater than \length(A), because that
would violate the bounds of the array.

Because n is not modified by the loop, we can use our knowledge that
\length(A) == n from A’s declaration in conjunction with the loop guard
i < n to conclude that i does not violate the upper bound (i.e., that i < \length(A)
in each iteration of the loop). For the lower bound, we need to specify a
loop invariant that ensures i ≥ 0.

7 for (int i = 0; i < n; i++)
8 //@loop_invariant 0 <= i;
9 {

10 A[i] = i * i * i;
11 }

Operationally, of course, we can reason that because i starts at 0 and only
increments on every iteration, i can’t ever be negative. But in this course
we eschew such operational reasoning, instead encoding this information
in loop invariant. We know that the loop invariant is true initially by the
for loop’s declaration: i is initially 0, and 0 ≤ 0. We furthermore know that,
in an arbitrary iteration of the loop that initially i < n by the loop guard, so
i′ = i + 1 cannot overflow to a negative number and the loop invariant is
always preserved.

5 Aliasing

We have seen assignments to array elements, such as A[0] = 0;. But we
have also seen assignments to array variables themselves, such as

int[] A = alloc_array(int, n);



Lecture 3: Arrays 7

What do they mean? To explore this, we separate the declaration of
array variables (here: F and G) from assignments to them.

% coin -d cubes.c0
C0 interpreter (coin) 0.3.3 ’Nickel’
Type ‘#help’ for help or ‘#quit’ to exit.
--> int[] F;
--> int[] G;
--> F = cubes(15);
F is 0xF6969A80 (int[] with 15 elements)
--> G[2];
Error: uninitialized value used
Last position: <stdio>:1.1-1.5
--> G = F;
G is 0xF6969A80 (int[] with 15 elements)
--> G = cubes(10);
G is 0xF6969A30 (int[] with 10 elements)
-->

The first assignment to F is as expected: it is the address of an array
with 15 elements. The use of G in G[2], of course, cannot succeed, because
we have only declared G to have a type of integer arrays, but did not assign
any array to G.

Afterward, however, when we assign G = F, then G and F (as locals)
hold the same address! Holding the same address means that F and G are
aliased. When we make the second assignment to G (changing its value) we
get a new array, which is in fact smaller and definitely no longer aliased
to F (note the different address). Aliasing (or the lack thereof) is crucial,
because modifying one of two aliased arrays will also change the other.
For example:

% coin
C0 interpreter (coin) 0.3.3 ’Nickel’
Type ‘#help’ for help or ‘#quit’ to exit.
--> int[] A = alloc_array(int, 5);
A is 0xE8176FF0 (int[] with 5 elements)
--> int[] B = A;
B is 0xE8176FF0 (int[] with 5 elements)
--> A[0] = 42;
A[0] is 42 (int)
--> B[0];
42 (int)



Lecture 3: Arrays 8

-->

C0 has no built-in way to copy from one array to another (ultimately
we will see that there are multiple meaningful ways to copy arrays of more
complicated types). Here is a simple function to copy arrays of integers.

1 int[] array_copy(int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@ensures \length(\result) == n;
4 {
5 int[] B = alloc_array(int, n);
6

7 for (int i = 0; i < n; i++)
8 //@loop_invariant 0 <= i;
9 {

10 B[i] = A[i];
11 }
12

13 return B;
14 }

For example, we can create B as a copy of A, and now assigning to the copy
of B will not affect A. We will invoke coin with the -d flag to make sure
that if a pre- or post-condition or loop invariant is violated we get an error
message.

% coin copy.c0 -d
C0 interpreter (coin) 0.3.3 ’Nickel’
Type ‘#help’ for help or ‘#quit’ to exit.
--> int[] A = alloc_array(int, 10);
A is 0xF3B8DFF0 (int[] with 10 elements)
--> for (int i = 0; i < 10; i++) A[i] = i*i;
--> int[] B = array_copy(A, 10);
B is 0xF3B8DFB0 (int[] with 10 elements)
--> B[9];
81 (int)
--> A[9] = 17;
A[9] is 17 (int)
--> B[9];
81 (int)
-->



Lecture 3: Arrays 9

6 Implementation Note

Internally, arrays are stored in the area of the memory called the heap. Mem-
ory on the heap is allocated with alloc_array, which returns the address
of an array (and later int his course alloc which returns a pointer). In C0,
memory is not explicitly deallocated, but it is garbage collected in the sense
that memory that can no longer be accessed from within the running pro-
gram is freed so that it can be used to satisfy future allocation requests.

In order to check whether array accesses are in bounds, the C0 runtime
system must store not only the array data, but also the length of the array.
In the running program, this information cannot be accessed directly: given
an array we cannot obtain its length. This is mostly in order to simulate
safe programming practices in C. For example, when arrays are passed as
arguments to functions we usually also pass (a bound on) their length.

However, in contracts (that is, function preconditions @requires, post-
conditions @ensures, loop invariants @loop_invariant and C0 assertions
@assert) we can refer to the length of an array using the special function
\length. We have already used this in the examples above. For example,
the copy function

int[] array_copy(int[] A, int n)
//@requires 0 <= n && n <= \length(A);
//@ensures \length(\result) == n;
;

requires n to be smaller than the length of the parameter array A and en-
sures that the result array will have length n.

Exercises

Exercise 1. Write a function array_part that creates a copy of a part of a given
array, namely the elements from position i to position j. Your function should
have prototype

int[] array_part(int[] A, int i, int j);

Develop a specification and loop invariants for this function. Prove that it works
correctly by checking the loop invariant and proving array bounds.

Exercise 2. Write a function copy_into that copies a part of a given array
source, namely n elements starting at position i, into another given array target,
starting at position j. Your function should have prototype



Lecture 3: Arrays 10

int copy_into(int[] source, int i, int n, int[] target, int j);

As an extra service, make your function return the last position in the target ar-
ray that it entered data into. Develop a specification and loop invariants for this
function. Prove that it works correctly by checking the loop invariant and proving
array bounds. What is difficult about this case?

Exercise 3. Can you develop a reasonable (non-degenerate) and useful function
with the following prototype? Discuss.

int f(int[] A);


	Using Arrays
	Using For-Loops to Traverse Arrays
	Specifications for Arrays
	Loop Invariants for Arrays
	Aliasing
	Implementation Note

