Lecture 25
Spanning Trees

15-122: Principles of Imperative Computation (Spring 2017)
Frank Pfenning, Iliano Cervesato

1 Introduction

The following is a simple example of a connected, undirected graph with 5
vertices (A, B,C, D, F) and 6 edges (AB, BC,CD, AE, BE, CE).

A D

B c

In this lecture we are particularly interested in the problem of computing
a spanning tree for a connected graph. What is a tree here? They are a bit
different than the binary search trees we considered early. One simple def-
inition is that a tree is a connected graph with no simple cycles, where a simple
cycle is a path that lets you go from a node to itself without repeating an
edge. A spanning tree for a connected graph G is a tree containing all the
vertices of G' and a subset of the edges of G.
The corresponding learning goals are as follows:

Computational Thinking: We continue our introduction to graphs by defin-
ing spanning trees as well as minimum spanning trees for graphs
with weighted edges.

Algorithms and Data Structures: We examine two ways to compute a span-
ning tree, and introduce Kruskal’s algorithm, a classical method for
calculating a minimum spanning tree.

LECTURE NOTES (© Carnegie Mellon University 2017



Lecture 25: Spanning Trees 2

Programming: We leave the implementation of these algorithms as exer-

cises to the reader.

2 Spanning Trees

Below are two spanning trees for our original example graph — there are

more.

B C B C

When dealing with a new kind of data structure, it is a good strategy
to try to think of as many different characterizations as we can. This is
somewhat similar to the problem of coming up with good representations
of the data; different ones may be appropriate for different purposes. Here
are some alternative characterizations:

1.
2.

Connected graph with no cycle (original).

Connected graph where no two neighbors are otherwise connected.
Neighbors are vertices connected directly by an edge, otherwise con-
nected means connected without the connecting edge.

Two trees connected by a single edge. This is a recursive characteriza-
tion. The base case is a single node, with the empty tree (no vertices)
as a possible special case.

A vertex connected to a tree by a single edge. The base case is again
a single vertex. This is another recursive characterization.

A connected graph with exactly v — 1 edges, where v is the number
of vertices.

A graph with exactly one path between any two distinct vertices,
where a path is a sequence of distinct vertices where each is connected
to the next by an edge. (For paths in a tree to be distinct, we have to
disallow paths that double back on themselves).



Lecture 25: Spanning Trees 3

We call a collection of trees a forest. Naturally, for a graph with more than
one connected component, we will want to compute a spanning forest con-
sisting of a spanning tree for each connected component.

When considering the asymptotic complexity of our various algorithms
on graphs, it is often useful to categorize graphs as dense or sparse. Dense
graphs have a lot of edges compared to the number of vertices. Writing
v = |V for the number of vertices (which will be our notation in the rest of
the lecture) we can see that the number of edges can be at most v x (v—1)/2:
each node could be connected to any other node (v x (v — 1)), but in an
undirected way (v x (v — 1)/2). If we write e for the number of edges, we
have e € O(v?). By comparison, a tree is sparse because e = v — 1 € O(v).

3 Computing a Spanning Tree

There are many algorithms to compute a spanning tree for a connected
graph. We will look at two of them.

3.1 Edge-centric Algorithm

The first is an example of an edge-centric algorithm. It leverages definition
(3) of trees in the last section. It proceeds as follows:

1. Start with the collection of singleton trees, each with exactly one node.

2. As long as we have more than one tree, connect two trees together
with an edge in the graph.

In the second step, we repeatedly examine one of the original graph edges
and determine whether it spans two disconnected trees. We can naively
do so by using DFS or BFS to check if its endpoints are already connected
in our spanning forest — if so we discard the edge, if not we add it to
the spanning tree. The cost of this test is O(e). How many edges will we
need to examine? We know by definition (5) of a tree that, if the graph
has v vertices, we will end up adding v — 1 edges. However, not all tests
are successful! In the worst case, we will need to examine all edges in the
graph, i.e., perform the test e times. This give this version of the edge-
centric algorithm an O(e?) complexity.

Can we do better? The efficiency of this algorithm is greatly affected
by how quickly we can tell if an edge would connect two trees or would
connect two nodes already in the same tree. Using DFS or BFS to answer
this question seems overkill because it does not account for any information



Lecture 25: Spanning Trees 4

about which node is in which tree — something we can track since we put
them in there. We will come back to this question in the next lecture.

Let’s try this algorithm on our first graph, considering edges in the
listed order: (AB, BC,CD, AE, BE, CF).

AQ Op A Op A Op A D A D
E E E E E
(3] (3] (3] (4]

BO Oc B Oc B cC B cC B c

The given graph is highlighted on top. The completely disconnected graph
on the left is the starting point for this algorithm. At the far right, we have
computed the spanning tree, which we know because we have added v —
1 = 4 edges. If we tried to continue, the next edge BE could not be added
because it does not connect two trees, and neither can C'E. The spanning
tree is complete.

3.2 Vertex-centric Algorithm

The second algorithm is vertex-centric. It is based on definition (4) of a tree
and proceeds as follow:

1. Pick an arbitrary node and mark it as being in the tree.
2. Repeat until all nodes are marked as in the tree:

Pick an arbitrary node u in the tree with an edge e to a node
w not in the tree. Add e to the spanning tree and mark w as
in the tree.

We can implement this by modifying BFS or other algorithm to check con-
nectivity, where we use a work list (a queue if adapting BFS) to remember
candidates vertices to add to the tree in step 2. Specifically, step 1 will pick
an arbitrary vertex and insert it in the queue. Step 2 will repeatedly pick



Lecture 25: Spanning Trees 5

a vertex from the queue and replace it with every neighbor that has never
been encountered before (which can be tracked using an array of marks).
At the same time, it will add the corresponding edge to the spanning tree.
This will continue as long as there are vertices in the queue (were the orig-
inal graph to be disconnected, we can pick an unmarked node and repeat
the algorithm starting from it, there by building a spanning forest).

This algorithm has cost O(v+e€): on the one hand it visits every vertex in
the graph, inserting it into the queue and then retrieving it exactly once —
that’s the O(v) part. For each vertex, it checks whether its neighbors have
been visited. This amounts to two checks for each edge in the graph (one
from each endpoint) and thus has cost O(e). To all effects, this algorithm
has cost O(v) for sparse graphs and O(e) for dense graphs. This is better
than the edge-centric algorithm we saw earlier.

Let’s play it out on our running example, starting with vertex A and
enqueuing new vertices in alphabetical order:

AOQ A A A A D
E E E E
B BO—OC B cC B C

At each step, the vertex highlighted in red is the node we are visiting, after
dequeuing it but before examining its neighbors. It is a coincidence that
the resulting spanning tree is identical to the one we obtained by using the
edge-centric algorithm.

4 Creating a Random Maze

We can use the algorithm to compute a spanning tree for creating a random
maze. We start with the graph where the vertices are the cells and the
edges represent the neighbors we can move to in the maze. In the graph,
all potential neighbors are connected. A spanning tree will be defined by a



Lecture 25: Spanning Trees 6

subset of the edges in which all cells in the maze are still connected by some
(unique) path. Because a spanning tree connects all cells, we can arbitrarily
decide on the starting point and end point after we have computed it.

How would we ensure that the maze is random? The idea is to gener-
ate a random permutation (see Exercise 1) of the edges and then consider
the edges in the fixed order. Each edge is either added (if it connects two
disconnected parts of the maze) or not (if the two vertices are already con-
nected). But, of course, we need an efficient way to determine if the two
vertices are already connected. We could use one of the search methods
from yesterday’s lecture, but as we’ll see tomorrow, we can do better.

5 Minimum Weight Spanning Trees

In many applications of graphs, there is some measure associated with the
edges. For example, when the vertices are locations then the edge weights
could be distances. We might then be interested in not any spanning tree,
but one whose total edge weight is minimal among all the possible span-
ning trees, a so-called minimum weight spanning tree (MST). An MST is not
necessarily unique. For example, all the edge weights could be identical in
which case any spanning tree will be minimal.

We annotate the edges in our running example with edge weights as
shown on the left below. On the right is the minimum weight spanning
tree, which has weight 9.

Before we develop a refinement of our edge-centric algorithm for span-
ning trees to take edge weights into account, we discuss a basic property it
is based on.

Cycle Property. Let C be a simple cycle in graph G, and e be an edge of
maximal weight in C. Then there is some MST of G that does not
contain e.



Lecture 25: Spanning Trees 7

How do we convince ourselves of this property? Assume we have a
minimum spanning tree 7', and edge e from the cycle property connects
vertices u and w. If e is not in T, then, indeed, we don’t need it. If e is in
T, we will construct another spanning tree without e of weight less than
or equal to 7”s weight. Removing edge e splits 7" into two subtrees. There
must be another edge ¢’ from C' that is not in 7" which also connects the two
subtrees. Removing e and adding ¢’ instead yields another spanning tree,
T, which does not contain e. 7" has equal or lower weight to 7', since ¢’
must have weight less than or equal to e.

The cycle property is the basis for Kruskal’s algorithm.

1. Sort all edges in increasing weight order.

2. Consider the edges in order. If the edge does not create a cycle, add
it to the spanning tree. Otherwise discard it. Stop when v — 1 edges
have been added, because then we must have a spanning tree.

Why does this create a minimum-weight spanning tree? It is a straightfor-
ward application of the cycle property (see Exercise 2).

Sorting the edges will take O(eloge) steps with most appropriate sort-
ing algorithms. The complexity of the second part of the algorithm depends
on how efficiently we can check if adding an edge will create a cycle or not.
As we will see in the next lecture, this can be O(elogv) or even more effi-
cient if we use a so-called union-find data structure.

[llustrating the algorithm on our example

we first sort the edges. There is some ambiguity—say we obtain the follow-

ing list
AE
BE
CFE
BC
CD
AB

LW W W N NN



Lecture 25: Spanning Trees 8

We now add the edges in order, making sure we do not create a cycle. After
AFE, BE, CE, we have

Opb

At this point we consider BC. However, this edge would create a cycle
BCE since it connects two vertices in the same tree instead of two differ-
ent trees. We therefore do not add it to the spanning tree. Next we consider
CD, which does connect two trees. At this point we have a minimum span-
ning tree

We do not consider the last edge, AB, because we have already added n —
1 = 4 edges.

In the next lecture we will analyze the problem of incrementally adding
edges to a tree in a way that allows us to quickly determine if an edge
would create a cycle.

Kruskal’s algorithm is nothing more than the edge-centric algorithm ex-
amined in Section 3, preceded by the additional step of sorting the edges
by increasing weight (and examining edges on the basis of that order). The
vertex-centric algorithm can similarly be adapted to compute a minimum
spanning tree of a weighted graph. At each step, of all edges between ver-
tices in the tree and vertices outside the tree, we will add an edge of mini-
mal weight. This can be achieved effectively by recording vertices (and the
associated edges) not in a queue but in a priority queue with lighter edges
having priority over heavier edges. The resulting procedure is known as
Prim’s algorithm and its run time complexity is dominated by the cost of in-
serting edges in the priority queue. This cost is O(e + vlogv) since we are



Lecture 25: Spanning Trees 9

inserting v vertices in the priority queue, but still check the neighbors of
each vertex.

Exercises

Exercise 1. Write a function to generate a random permutation of a given array,
using a random number generator with the interface in the standard rand library.
What is the asymptotic complexity of your function?

Exercise 2. Prove that the cycle property implies the correctness of Kruskal's al-
gorithm.



	Introduction
	Spanning Trees
	Computing a Spanning Tree
	Edge-centric Algorithm
	Vertex-centric Algorithm

	Creating a Random Maze
	Minimum Weight Spanning Trees

