
Lecture 23
Representing Graphs

15-122: Principles of Imperative Computation (Spring 2017)
Frank Pfenning, André Platzer, Rob Simmons, Penny Anderson

1 Introduction

In this lecture we introduce graphs. Graphs provide a uniform model for
many structures, for example, maps with distances or Facebook relation-
ships. Algorithms on graphs are therefore important to many applications.
They will be a central subject in the algorithms courses later in the curricu-
lum; here we only provide a very basic foundation for graph algorithms.

With respect to our learning goals we will look at the following notions.

Computational Thinking: We get a taste of the use of graphs in computer
science. We note that some graphs are represented explicitly while
others are kept implicit.

Algorithms and Data Structures: We see two basic ways to represent graphs:
using adjacency matrices and by means of adjacency lists.

Programming: We use linked lists to give an adjacency list implementa-
tion of graphs.

LECTURE NOTES c© Carnegie Mellon University 2017

Lecture 23: Representing Graphs 2

2 Undirected Graphs

We start with undirected graphs which consist of a set V of vertices (also
called nodes) and a set E of edges, each connecting two different vertices.
The following is a simple example of an undirected graph with 5 vertices
(A,B,C,D,E) and 6 edges (AB, BC, CD, AE, BE, CE):

We don’t distinguish between the edge AB and the edge BA because
we’re treating graphs as undirected. There are many ways of defining
graphs with slight variations. Because we specified above that each edge
connects two different vertices, we will say that no vertex in a graph can
have an edge from a node back to itself.

3 Implicit Graphs

There are many, many different ways to represent graphs. In some appli-
cations they are never explicitly constructed but remain implicit in the way
the problem was solved. The game of Lights Out is one example of a game
that implicitly describes an undirected graph. Lights Out is an electronic
game consisting of a grid of lights, usually 5 by 5. The lights are initially
pressed in some pattern of on and off, and the objective of the game is
to turn all the lights off. The player interacts with the game by touching
a light, which toggles its state and the state of all its cardinally adjacent
neighbors (up, down, left, right).

We can think of lights out as an implicit graph with 225 vertices, one for ev-
ery possible configuration of the 5x5 lights out board, and an edge between

Lecture 23: Representing Graphs 3

two vertices if we can transition from one board to another with a single
button press. If we transition from one board to another by pressing a but-
ton, we can return to the first board by pressing the same button. Therefore
the graph is undirected.

Each of the 225 vertices is therefore connected to 25 different edges, giving
us 25 × 225/2 total edges in this graph — we divide by 2 because going
to a node and coming back from it are expressed by the same edge. But
because the graph is implicit in the description of the Lights Out game, we
don’t have to actually store all 32 million vertices and 400 million edges in
memory to understand Lights Out.

An advantage to thinking about Lights Out as a graph is that we can
think about the game in terms of graph algorithms. Asking whether we
can get all the lights out for a given board is asking whether the vertex
representing our starting board is connected to the board with all the lights
out by a series of edges: a path. We’ll talk more about this graph reachability
question in the next lecture.

4 Explicit Graphs and a Graph Interface

Sometimes we do want to represent a graph as an explicit set of edges and
vertices and in that case we need a graph datatype. In the C code that
follows, we’ll refer to our vertices with unsigned integers. A minimal in-
terface for graphs would allow us to create and free graphs, check whether
an edge exists in the graph, and add a new edge to the graph.

1 typedef unsigned int vertex;
2 typedef struct graph_header* graph_t;
3

4 graph_t graph_new(unsigned int numvert);
5 //@ensures \result != NULL;

Lecture 23: Representing Graphs 4

6

7 void graph_free(graph_t G);
8 //@requires G != NULL;
9

10 unsigned int graph_size(graph_t G);
11 //@requires G != NULL;
12

13 bool graph_hasedge(graph_t G, vertex v, vertex w);
14 //@requires G != NULL;
15 //@requires v < graph_size(G) && w < graph_size(G);
16

17 void graph_addedge(graph_t G, vertex v, vertex w);
18 //@requires G != NULL;
19 //@requires v < graph_size(G) && w < graph_size(G);
20 //@requires v != w && !graph_hasedge(G, v, w);

We use the C0 notation for contracts on the interface functions here. Even
though C compilers do not recognize the @requires contract and will sim-
ply discard it as a comment, the contract still serves an important role for
the programmer reading the program. For the graph interface, we decide
that it does not make sense to add an edge into a graph when that edge is
already there, hence the second precondition.

With this minimal interface, we can create a graph for what will be our
running example (letting A = 0, B = 1, and so on):

graph_t G = graph_new(5);
graph_addedge(G, 0, 1); // AB
graph_addedge(G, 1, 2); // BC
graph_addedge(G, 2, 3); // CD
graph_addedge(G, 0, 4); // AE
graph_addedge(G, 1, 4); // BE
graph_addedge(G, 2, 4); // CE

We could implement this graph interface in a number of ways. In the
simplest form, a graph with e edges can be represented as a linked list or
array of edges. In the simplest linked list implementation, it takes O(1)
time to add an edge to the graph with graph_addedge, because it can be
appended to the front of the linked list. Finding whether an edge exists
in a graph with e edges might require traversing the whole linked list, so
graph_hasedge is a O(e) operation.

Hashtables and balanced binary search trees would be our standard

Lecture 23: Representing Graphs 5

tools in this class for representing sets of edges more efficiently. Instead
of taking that route, we will discuss two classic structures for directly rep-
resenting graphs.

5 Adjacency Matrices

One simple way is to represent the graph as a two-dimensional array that
describes its edge relation as follows.

There is a checkmark in the cell at row v and column v′ exactly when there
is an edge between nodes v and v′. This representation of a graph is called
an adjacency matrix, because it is a matrix that stores which nodes are neigh-
bors.

We can check if there is an edge from B (= 1) to D (= 3) by looking for a
checkmark in row 1, column 3. In an undirected graph, the top-right half
of this two-dimensional array will be a mirror image of the bottom-left,
because the edge relation is symmetric.

The adjacency matrix representation requires a lot of space: for a graph
with v vertices we must allocate space in O(v2). However, the benefit of the
adjacency matrix representation is that adding an edge (graph_addedge)
and checking for the existence of an edge (graph_hasedge) are both O(1)
operations.

Are the space requirements for adjacency matrices (requires space in
O(v2)) worse than the space requirements for storing all the edges in a
linked list (requires space in O(e))? That depends on the relationship be-
tween v, the number of vertices, and e the number of edges. A graph with
v vertices has between 0 and

(
v
2

)
= v(v−1)

2 edges. If most of the edges exist,
so that the number of edges is proportional to v2, we say the graph is dense.

Lecture 23: Representing Graphs 6

For a dense graph, O(e) = O(v2), and so adjacency matrices are a good rep-
resentation strategy for dense matrices, because in big-O terms they don’t
take up more space than storing all the edges in a linked list, and operations
are much faster.

6 Adjacency Lists

If a graph is not dense, then we say the graph is sparse. The other classic
representation of a graphs, adjacency lists, can be a good representation of
sparse graphs.

In an adjacency list representation, we have a one-dimensional array
that looks much like a hash table. Each vertex has a spot in the array, and
each spot in the array contains a linked list of all the other vertices con-
nected to that vertex. Our running example would look like this as an
adjacency list:

Adjacency lists require O(max(v, e)) space to represent a graph with v
vertices and e edges: we have to allocate a single array of length v and then
allocate two list entries per edge. Adding an edge is still constant time, but
lookup (graph_hasedge) now takes time in O(min(v, e)), since min(v−1, e)
is the maximum length of any single adjacency list.

Our very simple graph interface doesn’t let us take very good advan-
tage of the adjacency list implementation. Using adjacency lists allows
us to efficiently check many properties of the graph that, using only the
graph_hasedge function, would be quite a bit more expensive to check.
One example is finding some (unspecified) edge (if there is one) connected
to a vertex. This is O(1) if you can access the adjacency lists directly as
the implementation, but if you’re respecting the interface and only using

Lecture 23: Representing Graphs 7

graph_hasedge, the same check takes time in O(v). (We will add this func-
tionality to the interface when we study search algorithms.) Another ex-
ample is finding the neighbors of a vertex, which an adjacency list imple-
mentation can return in constant time (by simply returning the adjacency
list of that vertex). Using only the interface operations, the cost rises to
O(vmin(v, e)) — the cost calling hasedge on this vertex and all other ver-
tices in the graph.

The following table summarizes and compares the asymptotic cost as-
sociated with the adjacency matrix and adjacency list implementations of
a graph, under the assumptions used in this chapter. We also mention the
cost of finding the neighbors of a vertex if we were to implement it as a
library-side operation.

Adjacency Matrix Adjacency List

Space O(v2) O(max(v, e))

graph_hasedge O(1) O(min(v, e))

graph_addedge O(1) O(1)

(finding the neighbors of a vertex) O(v) O(1)

The cost of graph_hasedge can be reduced by storing the neighbors of each
node not in a linked list but in a more search-efficient data structure, for
example an AVL tree or a hash set. Of course, doing so requires additional
space, something that may not be desirable in some applications.

Lecture 23: Representing Graphs 8

7 Adjacency List Implementation

The header for a graph is a struct with two fields: the first is an unsigned
integer representing the actual size, and the second is an array of adjacency
lists.

1 typedef struct adjlist_node adjlist;
2 struct adjlist_node {
3 vertex vert;
4 adjlist *next;
5 };
6 typedef struct graph_header graph;
7 struct graph_header {
8 unsigned int size;
9 adjlist **adj;

10 };

We can allocate the struct using xmalloc, since we’re going to have to
initialize both its fields anyway. But we’d definitely allocate the adjacency
list itself using xcalloc to make sure that it is initialized to array full of
NULL values: empty adjacency lists.

12 graph graph_new(unsigned int size) {
13 graph G = xmalloc(sizeof(struct graph_header));
14 G->adj = xcalloc(size, sizeof(adjlist*));
15 G->size = size;
16 ENSURES(is_graph(G));
17 return G;
18 }

Given two vertices, we have to search through the whole adjacency list
for one vertex to see if it contains the other vertex. This is what gives the
operation a running time in O(min(v, e)).

20 bool graph_hasedge(graph* G, vertex v, vertex w) {
21 REQUIRES(is_graph(G) && is_vertex(G, v) && is_vertex(G, w));
22

23 adjlist *L = G->adj[v];
24 while (L != NULL) {
25 if (L->vert == w) return true;
26 L = L->next;
27 }
28 return false;
29 }

Lecture 23: Representing Graphs 9

Because we assume an edge must not already exist when we add it to
the graph, we can add an edge in constant time:

31 void graph_addedge(graph* G, vertex v, vertex w) {
32 REQUIRES(is_graph(G) && is_vertex(G, v) && is_vertex(G, w));
33 REQUIRES(v != w && !graph_hasedge(G, v, w));
34

35 adjlist *L;
36

37 L = xmalloc(sizeof(struct adjlist_node));
38 L->vert = w;
39 L->next = G->adj[v];
40 G->adj[v] = L;
41

42 L = xmalloc(sizeof(struct adjlist_node));
43 L->vert = v;
44 L->next = G->adj[w];
45 G->adj[w] = L;
46

47 ENSURES(is_graph(G));
48 }

Exercises

Exercise 1. Define the representation functions is_graph and is_vertex (and
any other you may need) used in the contracts of the adjacency matrix implemen-
tation in Section 7 of the graph interface of Section 4.

Exercise 2. Give an implementation of the graph interface in Section 4 based on
adjacency matrices. Make sure to provide adequate representation functions.

	Introduction
	Undirected Graphs
	Implicit Graphs
	Explicit Graphs and a Graph Interface
	Adjacency Matrices
	Adjacency Lists
	Adjacency List Implementation

