
Lecture 21 Notes
Types in C

15-122: Principles of Imperative Computation (Summer 1 2015)
Frank Pfenning, Rob Simmons

1 Introduction

Previous lectures have emphasized the things we lost by going to C:

• Many operations that would safely cause an error in C0, like derefer-
encing NULL or reading outside the bounds of an array, are undefined
in C – we cannot predict or reason about what happens when we have
undefined behaviors.

• It is not possible to capture or check the length of C arrays.

• In C, pointers and arrays are the same – and we declare them like
pointers, writing int *i.

• The C0 types string, char* and char[] are all represented as point-
ers to char in C.

• C is not garbage collected, so we have to explicitly say when we ex-
pect memory to be freed, which can easily lead to memory leaks.

In this lecture, we will endeavor to look on the bright side and look at the
new things that C gives us. But remember: with great power comes great
responsibility. Today we will look at the different ways that C represents
numbers and the general, though mostly implementation-defined, proper-
ties of these numbers that we frequently count on.

2 Numbers in C

In addition to the undefined behavior resulting from bad memory access
(dereferencing a NULL pointer or reading outside of an array), there is un-
defined behavior in C. In particular:

LECTURE NOTES



Types in C L21.2

• Division by zero is undefined. (In C0, this always causes an excep-
tion.)

• Shifting left or right by negative numbers or by a too-large number is
undefined. (In C0, this always causes an exception.)

• Arithmetic overflow for signed types like int is undefined. (In C0,
this is defined as modular arithmetic.)

This has some strange effects. If x and y are signed integers, then the
expressions x < x+1 and x/y == x/y are either true or undefined (due to
signed arithmetic or overflow, respectively). So the compiler is allowed
to pretend that these expressions are just true all the time. The compiler
is also allowed to behave the same way C0 does, returning false in the
first case when x is the maximum integer and raising an exception in the
second case when y is 0. The compiler is also free to check for signed inte-
ger overflow and division by zero and start playing Rick Astley’s “Never
Gonna Give You Up” if either occurs, though this is last option is unlikely
in practice. Undefined behavior is unpredictable – it can and does change
dramatically between different computers, different compilers, and even
different versions of the same compiler.

The fact that signed integer overflow is undefined is particularly an-
noying. A check like (x + 1 > x), which was a perfectly acceptable way
to check that x was not INT_MAX in C, is now a check that the compiler is
allowed to optimize to just true, because the result of this expression, in C,
is either true or undefined.

There are two ways of coping with signed integer overflow being unde-
fined. One option is to use unsigned types, which are required to obey the
laws of modular arithmetic: unsigned int instead of int. As an example,
consider a simple function to compute Fibonacci numbers. There are even
faster ways of doing this, but what we do here is to allocate an array on
the stack, fill it with successive Fibonacci numbers, and finally return the
desired value at the end.

unsigned int fib(unsigned int n) {

unsigned int A[n+2]; /* stack-allocated array A */

A[0] = 0;

A[1] = 1;

for (unsigned int i = 0; i <= n-2; i++)

A[i+2] = A[i] + A[i+1];

return A[n]; /* deallocates A just before actual return */

}

LECTURE NOTES



Types in C L21.3

There’s another solution, particular to the compiler, gcc, that we usu-
ally use to compile C programs. This compiler (as well as other modern C
compilers like clang), has a flag -fwrapv. When we compile with -fwrapv,
then the compiler promises it will treat overflow from addition and multi-
plication as signed two’s complement modular arithmetic, exactly like C0
did.

3 Implementation-defined Behavior

In addition to int, which is a signed type, there are the signed types short
and long, and unsigned versions of each of these types – short is smaller
than int and long is bigger. The numeric type char is smaller than short

and always takes up one byte. The maximum and minimum values of these
numeric types can be found in the standard header file <limits.h>.

C, annoyingly, does not define whether char is signed or unsigned. A
signed char is definitely signed, a unsigned char is unsigned. The type
char can be either signed or unsigned – this is implementation defined.

It is often very difficult to say useful and precise things about the C
programming language, because many of the features of C that we have
to rely on in practice are not part of the C standard. Instead, they are
things that the C standard leaves up to the implementation – implemen-
tation defined behaviors. Implementation defined behaviors make it quite
difficult to write code on one computer that will compile and run on an-
other computer, because on the other compiler may make completely dif-
ferent choices about implementation defined behavior.

The first example we have seen is that, while a char is always exactly
one byte, we don’t know whether it is signed or unsigned – whether it
can represent integer values in the range [128, 128) or integer values in the
range [0, 256). And it is even worse, because a byte can be more than 8 bits!
If you really want to mean “8 bits,” you should say octet.

In this class we going to rely on a number of implementation-defined
behaviors. For example, you can always assume that bytes are 8 bits on the
computers we’re using for this class in this decade. When it is important to
not rely on integer sizes being implementation-defined, it is possible to use
the types defined in <stdint.h>, which defines signed and unsigned types
of specific sizes. In the systems that you are going to use for programming,
you can reasonably expect a common set of implementation-defined be-
haviors: char will be a 8-bit integer (maybe signed, maybe unsigned) and
so on.

LECTURE NOTES



Types in C L21.4

This chart describes how the <stdint.h> types match up to the standard C
types in most modern C compilers:

C (signed) stdint.h (signed) stdint.h (unsigned) C (unsigned)
signed char int8_t uint8_t unsigned char

short int16_t uint16_t unsigned short

int int32_t uint32_t unsigned int

long int64_t uint64_t unsigned long

However, please remember that we cannot count on this correspondence
behavior in all C compilers!

There are two other crucial numerical types. The first, size_t, is the
type used represent memory sizes and array indices. The sizeof(ty) op-
eration in C actually returns just the size of a type in bytes, so malloc

and xmalloc actually take one argument of type size_t and calloc and
xcalloc take two arguments of type size_t. As we approach the third
decade of the 21st century, we’re increasingly using 64-bit systems and not
dealing with 32-bit systems anymore. On 32-bit systems, size_t is usu-
ally 4-byte, 32-bit unsigned integer. We now usually expect size_t to be a
64-bit, 8-byte unsigned integer.

4 Casting Between Numeric Types

Now that we’ve introduced a bunch of different integer types, we need to
see how to work with multiple integer types in the same program.

Imagine we have the hexadecimal value 0xF0 – represented as a se-
quence of bits as 11110000 – stored in an unsigned char, and we want to
turn that value into an int. (This is a problem you will actually encounter
later in this semester.) We can cast this character value to an integer value
buy writing (int)e.

unsigned char c = 0xF0;

int i = (int)c;

However, what will the value of this integer be? You can run this code and
find out on your own, but the important thing to realize is that it’s not clear,
because there are two different stories we can tell.

In the first story, we start by transforming the unsigned char into an
unsigned int. When we cast from a small unsigned quantity to a large un-
signed quantity, we can be sure that the value will be preserved. Because

LECTURE NOTES



Types in C L21.5

the bits 11110000 are understood as the unsigned integer 240, the unsigned
int will also be 240, written in hexadecimal as 0x000000F0. Then, when
we cast from an unsigned int to a signed int, we can expect the bits to re-
main the same (though this is really implementation defined), and because
the interpretation of signed integers is two’s-complement (also implemen-
tation defined) the final value will be 240.

In the second story, we transform the unsigned char into the signed-
char. Again, the implementation-defined behavior we expect is that we will
interpret the result as a 8-bit signed two’s-complement quantity, meaning
that 0xF0 is understood as -16. Then, when we cast from the small signed
quantity (char) to a large signed quantity (int), we know the quantity -16

will be preserved, meaning that we will end up with a signed integer writ-
ten in hexadecimal as 0xFFFFFFF0. In order to preserve the value as we
go from a small to a large signed quantity, all we have to do is use sign
extension - copy the high-order bit into all the new spaces.

0xF0 !
(as	
  a	
  uint8_t:	
  240)	
  

0x000000F0!
(as	
  an	
  uint32_t:	
  240)	
  

0xF0!
(as	
  an	
  int8_t:	
  -­‐16)	
  

preserve	
  bit	
  pa9ern	
  preserve	
  value	
  

0xFFFFFFF0!
(as	
  an	
  int32_t:	
  -­‐16)	
  

0x000000F0!
(as	
  an	
  int32_t:	
  240)	
  

preserve	
  value	
  preserve	
  bit	
  pa9ern	
  

The order in which we do these two steps matters! Therefore, if we
want to be clear about what result we want, we should cast in smaller steps
to be explicit about how we want our casts to work:

unsigned char c = 0xF0;

int i1 = (int)(unsigned int) c;

int i2 = (int)(char) c;

assert(i1 == 240);

assert(i2 == -16);

The C standard does define which of these two things will happen when
you cast directly from unsigned char to int. However, for the purposes

LECTURE NOTES



Types in C L21.6

of this class, where we’re trying to teach you enough C to write clear and
correct programs, it’s worth obeying the following rules:

• Never cast between signed and unsigned types of different sizes. Only
cast between signed and unsigned types with the same size (imple-
mentation defined to preserve bits) and between small and large types
that are either both signed or both unsigned.

• When you cast from a large signed (or unsigned) type to a small
signed (or unsigned) type, make sure that the type you’re casting to
can represent the number. (So, for instance, you can cast the int 17
to an signed char, but don’t cast the int 1000 to a signed char, be-
cause a signed char can only represent numbers between -128 and
127, inclusive.

• When you add, subtract, multiply, divide, compare, or do bitwise
operations involving multiple variables, it’s best to make sure that
all the numbers you’re working with have the same size and same
signedness. One important “gotcha” here: if you just write the num-
ber 4, it’s treated as an int by default, so writing

int64_t i = 1 << 40;

will actually be undefined behavior, because 1 is (implementation-
defined to be) a 32-bit quantity that can only be shifted by numbers
between 0 and 31, inclusive. The fix, in this situation, is to write:

int64_t i = 1;

i = i << 40;

5 Other Types In C

C introduces a number of other types as well that we didn’t have in C0. In
particular, many C programs use enum types, union types, and the floating
point types, float and double, which are used to represent fractional num-
bers like 0.25. You’ll learn more about these other C types in later courses,
like 15-213.

LECTURE NOTES


	Introduction
	Numbers in C
	Implementation-defined Behavior
	Casting Between Numeric Types
	Other Types In C

