
Lecture 15
Binary Search Trees

15-122: Principles of Imperative Computation (Spring 2017)
Frank Pfenning, André Platzer, Rob Simmons, Iliano Cervesato

1 Introduction

In this lecture, we will continue considering ways to implement the dic-
tionary (or associative array) interface. This time, we will implement this
interface with binary search trees. We will eventually be able to achieve
O(log n) worst-case asymptotic complexity for insert and lookup. This also
extends to delete, although we won’t discuss that operation in lecture.

This fits as follows with respect to our learning goals:

Computational Thinking: We discover binary trees as a way to organize
information. We superimpose to them the notion of sortedness, which
we examined in the past, as a way to obtain exponential speedups.

Algorithms and Data Structures: We present binary search trees as a space-
efficient and extensible data structure with a potentially logarithmic
complexity for many operations of interest — we will see in the next
lecture how to guarantee this bound.

Programming: We define a type for binary trees and use recursion as a
convenient approach to implement specification functions and oper-
ations on them.

2 Ordered Associative Arrays

Hash tables are associative arrays that organize the data in an array at an
index that is determined from the key using a hash function. If the hash
function is good, this means that the element will be placed at a reasonably
random position spread out across the whole array. If it is bad, linear search
is needed to locate the element.

LECTURE NOTES c© Carnegie Mellon University 2017

Lecture 15: Binary Search Trees 2

There are many alternative ways of implementing dictionaries. For ex-
ample, we could have stored the elements in an array, sorted by key. Then
lookup by binary search would have been O(log n), but insertion would be
O(n), because it takes O(log n) steps to find the right place, but then O(n)
steps to make room for that new element by shifting all bigger elements
over. (We would also need to grow the array as in unbounded arrays to
make sure it does not run out of capacity.) Arrays are not flexible enough
for fast insertion, but the data structure that we will be devising in this
lecture will be.

3 Abstract Binary Search

What are the operations that we needed to be able to perform binary search?
We needed a way of comparing the key we were looking for with the key of
a given element in our data structure. Depending on the result of that com-
parison, binary search returns the position of that element if they were the
same, advances to the left if what we are looking for is smaller, or advances
to the right if what we are looking for is bigger. For binary search to work
with the complexity O(log n), it was important that binary search advances
to the left or right many steps at once, not just by one element. Indeed, if we
would follow the abstract binary search principle starting from the middle
of the array but advancing only by one index in the array, we would obtain
linear search, which has complexity O(n), not O(log n).

Thus, binary search needs a way of comparing keys and a way of ad-
vancing through the elements of the data structure very quickly, either to
the left (towards elements with smaller keys) or to the right (towards big-
ger ones). In the array-based binary search we’ve studied, each iteration
calculates a midpoint

int mid = lo + (hi - lo) / 2;

and a new bound for the next iteration is (if the key we’re searching for is
smaller than the element at mid)

hi = mid;

or (if the key is larger)

lo = mid + 1;

So we know that the next value mid will be either (lo + mid) / 2 or
((mid + 1) + hi) / 2 (ignoring the possibility of overflow).

Lecture 15: Binary Search Trees 3

This pattern continues, and given any sorted array, we can enumerate
all possible binary searches:

This pattern means that constant-time access to an array element at an
arbitrary index isn’t necessary for doing binary search! To do binary search
on the array above, all we need is constant time access from array index 9
(containing 11) to array indices 4 and 14 (containing 1 and 29, respectively),
constant time access from array index 4 to array indices 2 and 7, and so on.
At each point in binary search, we know that our search will proceed in
one of at most two ways, so we will explicitly represent those choices with
a pointer structure, giving us the structure of a binary tree. The tree structure
that we got from running binary search on this array. . .

. . . corresponds to this binary tree:

4 Representing Binary Trees with Pointers

To represent a binary tree using pointers, we use a struct with two pointers:
one to the left child and one to the right child. If there is no child, the pointer
is NULL. A leaf of the tree is a node with two NULL pointers.

Lecture 15: Binary Search Trees 4

typedef struct tree_node tree;
struct tree_node {
elem data; // Non NULL
tree* left;
tree* right;

};

Rather than the fully generic data implementation that we used for hash
tables, we’ll assume for the sake of simplicity that the client is providing us
with two types, a pointer type elem corresponding to elements and a type
key for their keys, and with two functions, elem_key that returns the key
of an element and key_compare that compares two keys:

/* Client-side interface */
// typedef ______ key;
// typedef ______* elem;

key elem_key(elem e)
/*@requires e != NULL; @*/ ;

int key_compare(key k1, key k2)
/*@ensures -1 <= \result && \result <= 1; @*/ ;

We require that valid values of type elem be non-NULL. As usual, our im-
plementation of dictionaries based on trees will use NULL to signal that an
elem is not there.

The function key_compare provided by the client is different from the
equivalence function we used for hash tables. For binary search trees, we
need to compare keys k1 and k2 and determine if k1 < k2, or k1 = k2,
or k1 > k2. A common approach to this is for a comparison function to
return an integer r, where r < 0 means k1 < k2, r = 0 means k1 = k2, and
r > 0 means k1 > k2. Our contract captures that we expect key_compare to
return no values other than -1, 0, and 1.

Trees are the second recursive data structure we’ve seen: a tree node has
two fields that contain pointers to tree nodes. Thus far we’ve only seen
recursive data structures as linked lists, either chains in a hash table or list
segments in a stack or a queue.

Let’s remember how we picture list segments. Any list segment is re-
ferred to by two pointers, start and end, and there are two possibilities
for how this list can be constructed, both of which require start to be non-
NULL (and start->data also to satisfy our constraints on elem values).

Lecture 15: Binary Search Trees 5

bool is_segment(list* start, list* end) {
if (start == NULL) return false;
if (start->data == NULL) return false;
if (start == end) return true;
return is_segment(start->next, end);

}

We can represent these choices graphically by using a picture like to
represent an arbitrary segment. Then we know every segment has one or
two forms:

We’ll create a similar picture for trees: the tree containing no elements
is NULL, and a non-empty tree is a struct with three fields: the data and the
left and right pointers, which are themselves trees.

Rather than drawing out the tree_node struct with its three fields explic-
itly, we’ll usually use a more graph-like way of presenting trees:

This recursive definition can be directly encoded into a very simple data
structure invariant is_tree. It checks very little: just that all the data fields
are non-NULL, as the client interface requires. If it terminates, it also ensures
that there are no cycles; a cycle would cause non-termination, just as it
would with is_segment.

bool is_tree(tree* root) {
if (root == NULL) return true;
return root->data != NULL

&& is_tree(root->left) && is_tree(root->right);
}

Lecture 15: Binary Search Trees 6

4.1 The Ordering Invariant

Binary search was only correct for arrays if the array was sorted. Only then
do we know that it is okay not to look at the upper half of the array if the
element we are looking for is smaller than the middle element, because, in
a sorted array, it can then only occur in the lower half, if at all. For binary
search to work correctly on binary search trees, we, thus, need to maintain
a corresponding data structure invariant: all elements to the right of a node
have keys that are bigger than the key of that node. And all the nodes to the
left of that node have smaller keys than the key at that node. This ordering
invariant is a core idea of binary search trees; it’s what makes a binary tree
into a binary search tree.

Ordering Invariant. At any node with key k in a binary search
tree, they key of all elements in the left subtree is strictly less
than k, while the key of all elements in the right subtree is strictly
greater than k.

This invariant implies that no key occurs more than once in a tree, and we
have to make sure our insertion function maintains this invariant.

We won’t write code for checking the ordering invariant just yet, as that
turns out to be surprisingly difficult. We’ll first discuss the lookup and
insertion functions for binary search trees. As we carry out this discussion,
we will assume we have a function is_bst(T) that incorporates is_tree
seen earlier and the ordering invariant. We will implement is_bst later in
this lecture.

5 Searching for a Key

The ordering invariant lets us find an element with key k in a binary search
tree the same way we found an element with binary search, just on the
more abstract tree data structure. Here is a recursive algorithm for search,
starting at the root of the tree:

1. If the tree is empty, stop.

2. Compare the key k′ of the current node to k. Stop if equal.

3. If k is smaller than k′, proceed to the left child.

4. If k is larger than k′, proceed to the right child.

Lecture 15: Binary Search Trees 7

The implementation of this search captures the informal description above.
Recall that elem_key(e) extracts the key component of element e and that
key_compare(k1,k2) returns -1 if k1 < k2, 0 if k1 = k2, and 1 if k1 > k2.

1 elem bst_lookup(tree* T, key k)
2 /*@requires is_bst(T); @*/
3 /*@ensures \result == NULL
4 || key_compare(elem_key(\result), k) == 0; @*/
5 {
6 if (T == NULL) return NULL;
7

8 int cmp = key_compare(k, elem_key(T->data));
9 if (cmp == 0) return T->data;

10 if (cmp < 0) return bst_lookup(T->left, k);
11 //@assert cmp > 0;
12 return bst_lookup(T->right, k);
13 }

We chose here a recursive implementation, following the structure of a tree,
but in practice an iterative version may also be a reasonable alternative (see
Exercise 1). We also chose to return not a Boolean but either the element
itself if it matches the key k given in input, and NULL otherwise. In this way,
we can use our burgeoning binary search tree support both to implement
dictionaries and sets — for a set, the types key and elem are the same and
the function elem_key simply returns its argument.

6 Complexity

If our binary search tree were perfectly balanced, that is, had the same num-
ber of nodes on the left as on the right for every subtree, then the ordering
invariant would ensure that search for an element with a given key has
asymptotic complexity O(log n), where n is the number of elements in the
tree. Every time we compare the key k with the root of a perfectly balanced
tree, we either stop or throw out half the elements in the tree.

In general we can say that the cost of lookup is O(h), where h is the
height of the tree. We will define height to be the maximum number of
nodes that can be reached by any sequence of pointers starting at the root.
An empty tree has height 0, and a tree with two children has the maximum
height of either child, plus 1.

Lecture 15: Binary Search Trees 8

7 The Interface

Before we talk about insertion into a binary search tree, we should recall the
interface of dictionaries and discuss how we will implement it. Remember
that we’re assuming a client definition of types elem and key, and functions
elem_key and key_compare, rather than the fully generic version using
void pointers and function pointers.

/* Library interface */
// typedef ______* dict_t;

dict_t dict_new()
/*@ensures \result != NULL; @*/ ;

elem dict_lookup(dict_t D, key k)
/*@requires D != NULL; @*/
/*@ensures \result == NULL

|| key_compare(elem_key(\result), k) == 0; @*/ ;

void dict_insert(dict_t D, elem e)
/*@requires D != NULL && e != NULL; @*/
/*@ensures D != NULL

&& dict_lookup(D, elem_key(e)) != NULL; @*/ ;

We can’t define the type dict_t to be tree*, for two reasons. One rea-
son is that a new tree should be empty, but an empty tree is represented by
the pointer NULL, which would violate the dict_new postcondition. More
fundamentally, if NULL was the representation of an empty dictionary, there
would be no way to write a function to imperatively insert additional el-
ements. This is because a function call makes copies of the (small) values
passed as arguments.

The usual solution here is one we have already used for stacks, queues,
and hash tables: we have a header which in this case just consists of a pointer
to the root of the tree. We often keep other information associated with the
data structure in these headers, such as the size.

Lecture 15: Binary Search Trees 9

1 struct dict_header {
2 tree* root;
3 };
4 typedef struct dict_header dict;
5

6 bool is_dict(dict* D) {
7 return D != NULL && is_bst(D->root);
8 }

Lookup in a dictionary then just calls the recursive function we’ve already
defined:

10 elem dict_lookup(dict* D, key k)
11 /*@requires is_dict(D); @*/
12 /*@ensures \result == NULL
13 || key_compare(elem_key(\result), k) == 0; @*/
14 {
15 return bst_lookup(D->root, k);
16 }

The relationship between the functions is_dict and is_bst and between
dict_lookup and bst_lookup is a common one. The non-recursive func-
tion is_dict is given the non-recursive struct dict_header, and then calls
the recursive helper function is_bst on the recursive structure of tree nodes.

8 Inserting an Element

With the header structure, it is straightforward to implement bst_insert.
We just proceed as if we are looking for the given element. If we find a node
with the same key, we just overwrite its data field. Otherwise, we insert
the new element in the place where it would have been, had it been there
in the first place. This last clause, however, creates a small difficulty. When
we hit a null pointer (which indicates the key was not already in the tree),
we cannot replace what it points to (it doesn’t point to anything!). Instead,
we return the new tree so that the parent can modify itself.

Lecture 15: Binary Search Trees 10

18 tree* bst_insert(tree* T, elem e)
19 /*@requires is_bst(T) && e != NULL; @*/
20 /*@ensures is_bst(\result)
21 && bst_lookup(T, elem_key(e)) != NULL; @*/
22 {
23 if (T == NULL) {
24 /* create new node and return it */
25 tree* R = alloc(tree);
26 R->data = e;
27 R->left = NULL; // Not required (initialized to NULL)
28 R->right = NULL; // Not required (initialized to NULL)
29 return R;
30 }
31

32 int cmp = key_compare(elem_key(e), elem_key(T->data));
33 if (cmp == 0) T->data = e;
34 else if (cmp < 0) T->left = bst_insert(T->left, e);
35 else {
36 //@assert cmp > 0;
37 T->right = bst_insert(T->right, e);
38 }
39 return T;
40 }

The returned subtree will also be stored as the new root:

42 void dict_insert(dict* D, elem e)
43 //@requires is_dict(D) && e != NULL;
44 //@ensures is_dict(D)
45 && dict_lookup(D, elem_key(e)) != NULL;
46 {
47 D->root = bst_insert(D->root, e);
48 }

Lecture 15: Binary Search Trees 11

9 Checking the Ordering Invariant

When we analyze the structure of the recursive functions implementing
search and insert, we are tempted to try defining a simple, but wrong! or-
dering invariant for binary trees as follows: tree T is ordered whenever

1. T is empty, or

2. T has key k at the root, TL as left subtree and TR as right subtree, and

• TL is empty, or TL’s key is less than k and TL is ordered; and

• TR is empty, or TR’s key is greater than k and TR is ordered.

This would yield the following code:

/* THIS CODE IS BUGGY */
bool is_ordered(tree* T) {
if (T == NULL) return true; /* an empty tree is a BST */
elem k = T->data;
return (T->left == NULL

|| (elem_compare(T->left->data), k) < 0
&& is_ordered(T->left)))

&& (T->right == NULL
|| (elem_compare(k, T->right->data)) < 0

&& is_ordered(T->right)));
}

While this should always be true for a binary search tree, it is far weaker
than the ordering invariant stated at the beginning of lecture. Before read-
ing on, you should check your understanding of that invariant to exhibit a
tree that would satisfy the above code, but violate the ordering invariant.

Lecture 15: Binary Search Trees 12

There is actually more than one problem with this. The most glaring
one is that following tree would pass this test:

Even though, locally, the key of the left node is always smaller and on the
right is always bigger, the node with key 9 is in the wrong place and we
would not find it with our search algorithm since we would look in the
right subtree of the root.

An alternative way of thinking about the invariant is as follows. As-
sume we are at a node with key k.

1. If we go to the left subtree, we establish an upper bound on the keys in
the subtree: they must all be smaller than k.

2. If we go to the right subtree, we establish a lower bound on the keys in
the subtree: they must all be larger than k.

The general idea then is to traverse the tree recursively, and pass down an
interval with lower and upper bounds for all the keys in the tree. The fol-
lowing diagram illustrates this idea on a tree with integer elements. We
start at the root with an unrestricted interval, allowing any key, which
is written as (−∞,+∞). As usual in mathematics we write intervals as
(x, z) = {y | x < y and y < z}. At the leaves we write the interval for the
subtree. For example, if there were a left subtree of the node with key 7, all
of its keys would have to be in the interval (5, 7).

Lecture 15: Binary Search Trees 13

The only difficulty in implementing this idea is the unbounded inter-
vals, written above as −∞ and +∞. Here is one possibility: we pass not
just the key value, but the particular element from which we can extract the
key that bounds the tree. Since elem must be a pointer type, this allows us
to pass NULL in case there is no lower or upper bound.

50 bool is_ordered(tree* T, elem lo, elem hi) {
51 if (T == NULL) return true;
52 return T->data != NULL
53 && (lo == NULL ||
54 key_compare(elem_key(lo), elem_key(T->data)) < 0)
55 && (hi == NULL ||
56 key_compare(elem_key(T->data), elem_key(hi)) < 0)
57 && is_ordered(T->left, lo, T->data)
58 && is_ordered(T->right, T->data, hi);
59 }

We can then combine our earlier (and admittedly minimal) is_tree
and is_ordered into a function that checks whether a given tree is a binary
search tree, and using it we can define a representation invariant function
for dictionaries implemented as binary search trees:

61 bool is_bst(tree* T) {
62 return is_tree(T) && is_ordered(T, NULL, NULL);
63 }
64

65 bool is_dict(dict* D) {
66 return D != NULL && is_bst(D->root);
67 }

Lecture 15: Binary Search Trees 14

A word of caution: the call to is_ordered(T, NULL, NULL) embedded
in the pre- and post-condition of the function bst_insert is actually not
strong enough to prove the correctness of the recursive function. A similar
remark applies to bst_lookup. This is because of the missing information
of the bounds. We will return to this issue later in the course.

10 The Shape of Binary Search Trees

We have already mentioned that balanced binary search trees have good
properties, such as logarithmic time for insertion and search. The question
is if binary search trees will be balanced. This depends on the order of
insertion. Consider the insertion of numbers 1, 2, 3, and 4.

If we insert them in increasing order we obtain the following trees in
sequence.

Similarly, if we insert them in decreasing order we get a straight line, al-
ways going to the left. If we instead insert in the order 3, 1, 4, 2, we obtain
the following sequence of binary search trees:

Clearly, the last tree is much more balanced. In the extreme, if we insert
elements with their keys in order, or reverse order, the tree will be linear,
and search time will be O(n) for n items.

These observations mean that it is extremely important to pay attention
to the balance of the tree. We will discuss ways to keep binary search trees
balanced in the next lecture.

Lecture 15: Binary Search Trees 15

Exercises

Exercise 1. Rewrite tree_lookup to be iterative rather than recursive.

Exercise 2. Rewrite tree_insert to be iterative rather than recursive. [Hint:
The difficulty will be to update the pointers in the parents when we replace a node
that is NULL. For that purpose we can keep a “trailing” pointer which should be
the parent of the node currently under consideration.]

Exercise 3. The binary search tree interface only expected a single function for key
comparison to be provided by the client:

int key_compare(key k1, key k2);

An alternative design would have been to, instead, expect the client to provide a
set of key comparison functions, one for each outcome:

bool key_equal(key k1, key k2);
bool key_greater(key k1, key k2);
bool key_less(key k1, key k2);

What are the advantages and disadvantages of such a design?

	Introduction
	Ordered Associative Arrays
	Abstract Binary Search
	Representing Binary Trees with Pointers
	The Ordering Invariant

	Searching for a Key
	Complexity
	The Interface
	Inserting an Element
	Checking the Ordering Invariant
	The Shape of Binary Search Trees

