Lecture 14
Generic Data Structures

15-122: Principles of Imperative Computation (Spring 2017)
Rob Simmons

1 Introduction

Our story about client interfaces in the previous lecture was incomplete.
We were able to use client interfaces to implement queues and hash tables
that treat the client’s elem type as abstract, but any given program could
only have a single type of element, a single way of hashing.

To solve these problems, we will have to move beyond the C0 language
to a language we call C1. C1 gives us two important features that aren’t
available in CO. The first new feature is function pointers, which allow us
to augment hash sets with methods, an idea that is connected to Java and
object-oriented programming. The second new feature is a void pointer,
which acts as a generic pointer.

Starting in this lecture, we will be working in an extension of C0 called
C1. To get the ccd compiler to recognize C1, you need to use a .c1 exten-
sion. Coin does not currently accept C1.

Relating to our learning goals, we have

Computational Thinking: Structs with function pointers that can be used
to modify the data contained within the struct is an important idea
from object oriented programming.

Algorithms and Data Structures: We will revisit the idea of hash sets in a
new setting.

Programming: We explore function pointers and void pointers, which are
necessary for creating truly generic data structures in C0/Cl1.

LECTURE NOTES (© Carnegie Mellon University 2017

B W N =

Lecture 14: Generic Data Structures 2

2 Hash Set Review

In the last lecture, we talked about a client interface for hash sets that al-
lowed us to treat the type elem of hash table elements as abstract to the
library, and therefore changeable by the client. Recall this interface, as we
developed it in the last lecture:

/**x*x Client interface x*xx/

// typedef _______ elem; // Supplied by client
bool elem_equiv(elem x, elem y); // Supplied by client
int elem_hash(elem x); // Supplied by client

/**xx Library interface *xx/
// typedef ______ * hset_t;

hset_t hset_new(int capacity)
/*@requires capacity > 0; @/
/*@ensures \result != NULL; @x/ ;

elem hset_contains(hset_t H, elem x)
/*@requires H '= NULL; @x/ ;

void hset_add(hset_t H, elem x)
/*@requires H !'= NULL; @/
/*@ensures hset_contains(H, x); @/ ;

There is still a significant problem with this structure of a client/library
interface. Within a given program, we could only instantiate the client in-
terface type and the client functions once. This is a problem: even if we are
okay committing to a single type of element, like a struct with two fields
colorand fruit

struct produce {
string color;
string fruit;

}

there are multiple reasonable ways of instantiating the two client functions
elem_equiv and elem_hash.

If we treat elements as equivalent only if all fields are equal, then we can
have a set containing red, yellow, and green apples, red and blue berries,
and yellow and green bananas.

10

11

12

13

14

15

16

17

18

20

21

22

23

24

25

26

27

28

29

30

Lecture 14: Generic Data Structures 3

bool produce_equiv_all(struct producex x, struct producex y)
//@requires x !'= NULL && y != NULL;
{
return string_equal(x->color, y->color)
&& string_equal(x->fruit, y->fruit);
}

int produce_hash_all(struct producex x)
//@requires x != NULL;
{
return hash_string(string_join(x->color,
string_join(" ", x->fruit)));

Maybe we only care about which fruits the table contains (so that red
apples and green apples are the same from the perspective of the set).

bool produce_equiv_color(struct producex x, struct producex y)
//@requires x != NULL && y != NULL;
{

return string_equal(x->color, y->color);

}

int produce_hash_color(struct producex x)
//@requires x !'= NULL;
{

return hash_string(x->color);

}

Our first goal will be to allow, within a single program, the use of hash
sets that treat all fruits the as equivalent, all colors as equivalent, and sets
that only contain fruits with the same color and name as equivalent. We
will accomplish this with function pointers.

Lecture 14: Generic Data Structures i

3 Function Pointers

Although we saw two different functions for equivalence checking above,
as long as we have

typedef struct producex elem;

they both match the hash set client interface declaration for elem_equiv; in
fact, any function that checks two struct produce values for equality has
a declaration of the form:

bool equiv(struct producex x, struct producex y);

The function name can be anything we choose, and so can the parameter
names, but the return type and the parameter types are fixed (as well as the
contract, with parameter names suitably adjusted).

In C1, we can define a type capturing all such functions by just adding
the word typedef to the beginning of the example declaration above:

typedef bool equiv_fn(struct producex x, struct producex y);

By convention, we use _fn as a suffix for function types, just like we used
_t as a suffix for client-side abstract data types.

When we call a function by writing equiv(a,b), the code that executes
is stored in memory in compiled form. Since the amount of memory is large
(compared to CO small types), it is illegal to write code that treats functions
like other values, as below:

equiv_fn f; // NOT ALLOWED
f = produce_equiv_all; // NOT ALLOWED
println(f(a,b) ? "equiv" : "not equiv");
f = produce_equiv_color; // NOT ALLOWED
println(f(a,b) ? "equiv" : "not equiv");

Instead, in the extended language C1, we can declare pointers to functions
of type equiv_fn.

equiv_fnx* g;

We don’t create function pointers by dynamically allocating them the
way we do structs: all the functions we could possibly have in our pro-
gram are already known when we compile the program. Instead, we use a
new operator, & (read as address-of). If we write & roduce_equiv_all, we
obtain a pointer to the function produce_equiv_all. So we can assign the
pointer to g as follows, as long as produce_equiv_all has the correct type.

Lecture 14: Generic Data Structures 5

equiv_fn*x g = &produce_equiv_all;

When we call a function using a function pointer, we have to use paren-
theses like this: (*g) (a,b), because *g(a,b) is parsed the same way as
*(g(a,b)).

We can correct the illegal example above to:

equiv_fnx f;
f = &produce_equiv_all;

println((*f)(a,b) ? "equiv" : "not equiv");
f = &produce_equiv_color;
println((*f)(a,b) ? "equiv" : "not equiv");

Like all other pointers, function pointers can be NULL, and it is a safety
violation to dereference a NULL function pointer.

4 Methods For Hash Sets

Remember our goal: to allow, within a single program, the use of hash sets
that act like sets of colored fruits, and other hash sets that act like maps from
colors to fruits. To achieve this, we will make hash tables more generic.

The first step is to change the client interface from declaring two partic-
ular functions elem_equiv and elem_hash to declaring two function types,
elem_equiv_fn and elem_hash_fn.

/**x*x Client interface x*xx/
typedef struct producex elem;

typedef bool elem_equiv_fn(elem x, elem y);

typedef int elem_hash_fn(elem x);

Lecture 14: Generic Data Structures 6

Now our old code for checking that an element is in a hash set is bro-
ken, because the functions elem_hash and elem_equiv are no longer in the
client interface.

s bool hset_contains(hsetx H, elem x)

9 //@requires is_hset(H);

10 {

1 int i = abs(elem_hash(x) % H->capacity); // BROKEN

12 for (chainx p = H->table[i]; p != NULL; p = p->next) {

13 if (elem_equiv(p->data, x)) { // BROKEN
14 return true;

15 }

16 }

17
18 return false;

19 }

In C1 with function pointers, there are at least two options: one option
is that we could pass along pointers to the needed functions as extra argu-
ments to the hset_contains

s bool hset_contains(hset* H, elem x,

9 elem_hash_fn*x hash, elem_equiv_fn* equiv)
10 //@requires is_hset(H, hash, equiv);

n //@requires x != NULL && hash != NULL && equiv != NULL;

12 {

13 int i = abs((xhash)(x) % H->capacity);

1 for (chainx p = H->table[i]; p != NULL; p = p->next) {

15 if ((*xequiv)(p->data, x)) {
16 return true;

17 }

18}

20 return false;

2}

This is not the best option, though: the data structure invariants of our hash
set implementation require that the placement of each element into a chain
makes sense with respect to the hash function. We might want to have two dif-
ferent hash sets during the course of a program: H1 using produce_hash_all
and H2 using produce_hash_color, but it will never make sense to have
a single hash set change which hash function it is using. So the right ap-

Lecture 14: Generic Data Structures 7

proach is to store the two functions as fields of the struct hset_header
that is created when we call hset_new.

1 typedef struct hset_header hset;
» struct hset_header {

3 int size; // 0 <= size

4+ 1int capacity; // 0 < capacity

5 chainx[] table; // \length(table) == capacity
¢ elem_equiv_fnx equiv; // non-NULL

7 elem_hash_fnx hash; // non-NULL

s };

Now our data structure invariant has to ensure that the function point-
ers are not NULL, and hset_new has to store the function pointers in the
struct:

10 bool is_hset(hsetx H) {

11 return H != NULL

12 && H->capacity > 0

13 && H->size >= 0

14 && H->equiv != NULL

15 && H->hash != NULL

16 && is_table_expected_length(H->table, H->capacity)

17 /* && each element satisfies its own representation invariants */
18 /* & there aren’t equivalent elements */

19 /* && the number of elements matches the size x*/

0 /*x && every element in H->table[i] hashes to i */

n }

22

» hsetx hset_new(int capacity,

2 elem_equiv_fnx equiv, elem_hash_fnx hash)
» //@requires capacity > 0 && equiv '= NULL && hash !'= NULL;
% //@ensures is_hset(\result);

27 {

s hsetx H alloc(hset);

29 H->size 0;

s H->capacity = capacity;

31 H->table = alloc_array(chainx, capacity);

2 H->equiv = equiv;

33 H->hash = hash;

34 return H;

35}

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

Lecture 14: Generic Data Structures 8

The function pointers H->equiv and H->hash can be thought of as meth-
ods in an object-oriented language like Java: they are functions bundled with
a particular hash set object that help us interpret the data in that object.
Syntactically, compared to object-oriented languages, it’s a little bit cum-
bersome to call these functions with the C1 notation. To avoid a lot of calls
that use the cumbersome notation (*H->equiv) (x,y), we will write some
helper functions so we can use calls that look like elemequiv(H,x,y).

bool elemequiv(hsetx H, elem x, elem vy)
//@requires H !'= NULL && H->equiv != NULL;
{

return (xH->equiv) (x, y);

}

int elemhash(hsetx H, elem x)
//@requires H != NULL && H->capacity > 0 && H->hash != NULL;
//@ensures 0 <= \result && \result < H->capacity;
{
return abs((xH->hash)(x) % H->capacity);

}

bool hset_contains(hsetx H, elem x)
//@requires is_hset(H, hash, equiv);
//@requires hash != NULL && equiv != NULL;
{
int i = elemhash(H, x);
for (chainx p = H->table[i]; p != NULL; p = p->next) {
if (elemequiv(H, x, p->data)) {
return true;
}
}

return false;

}

Now we can achieve the generic behavior we wanted by creating two
hash tables, one that acts like a set of colored fruits (H1) and one that acts
like an associative array where keys are colors and values are fruits (H2).

hset_t Hl1 = hset_new(100, &produce_equiv_all, &produce_hash_all);
hset_t H2 = hset_new(100, &produce_equiv_color, &produce_hash_color);
hset_t H3 = hset_new(100, &produce_equiv_all, &produce_hash_color);

Lecture 14: Generic Data Structures 9

The third hash table, H3, works just like H1, but it may be much less ef-
ficient, because we know that any two distinct fruits with the same color
will definitely collide. This is bad, but it is not as bad as a hash table which
has the equivalence function produce_equiv_color and the hash function
produce_hash_all. Such a hash set would be fundamentally broken; the
invariants of a hash table require that if any two elements are equivalent,
they must have the same hash value.

5 Generic Pointers: void«

Our different types of hash sets can co-exist in one program, which was
our goal, but this is only true because they are storing the same type of el-
ement, struct produce. But we often need more generality than this: for
instance, in the Clac program, we needed two stacks storing different types
of elements. We can generalize our hash sets, abstracting away the element
type using another new feature of C1, the void pointer (written void*.) Us-
ing this feature, we can avoid the error-prone and wasteful copying of the
hash set library that would otherwise be needed for each type of hash set
element used in a program.

It should be said that calling it voidx is a terrible name! (Blame C.) A
variable p of type voidx is allowed to hold a pointer to anything, not just to
void. Any pointer can be turned into a void pointer by a cast:

void* pl = (voidx)alloc(int);

void*x p2 = (voidx)alloc(string);

void* p3 = (voidx)alloc(struct produce);
voidx p4 = (voidx)alloc(intxx);

When we have a void pointer, we can turn it back into the type it came
from by casting in the other direction:

intx x = (intx)pl;
string x = *x(stringx)p2;

At runtime, a non-NULL void pointer has a tag: casting incorrectly, like try-
ing to run (charx)pl in the example above, is a safety violation: it will
cause a memory error just like a NULL dereference or array-out-of-bounds
error.

These tags make void pointers a bit like values in Python: a void pointer
carries the information about its true pointer type, and an error is raised if
we treat a pointer to an integer like a pointer to a string or vice versa. Inside
of contracts, we can check that type with the \hastag(ty,p) function:

1

2

3

10

11

12

13

14

15

Lecture 14: Generic Data Structures 10

//@assert \hastag(intx, pl);
//@assert \hastag(stringx, p2);
//@assert \hastag(intxxx, p4);

//@assert !'\hastag(stringx, pl);
//@assert !\hastag(intxx, pl);
//@assert !'\hastag(int*xx, pl);

One quirk: the NULL void pointer is just NULL, so \hastag(ty, NULL) al-
ways returns true and we can do slightly strange things like this without
any error:

NULL;
(voidx) (intx*) (voidx) (string*) (void=) (struct producex)p;

voidx* p
void* X

6 Generic Hash Sets

Function pointers allowed us to implement hash sets without committing
to a single implementation of our hashing and equivalence functions, but
without voidx, C1 still requires us to commit to a single implementation of
the elem type. But if we let the type of an element be voidx, then that’s no
commitment at all: we can use any pointer type as our element.

[/ Kk sk okok ok sk okok ok ok ok ok ok ko /

/xx*x Client interface x*xx/
/KK 3k sk sk ok sk ok sk sk sk ok ok sk sk sk sk ok ok ok ok ok ok ok /

// Library treats this like typedef _______ elem;
typedef voidx elem;

typedef bool elem_equiv_fn(elem x, elem y);
typedef int elem_hash_fn(elem x);

The cost of this approach to generic data structures is that, within our
client functions, we need to cast the generic pointers back to their original
types before we use them.

bool produce_equiv_all(void* x, voidx y)
//@requires x != NULL && \hastag(struct producex, x);
//@requires y != NULL && \hastag(struct producex, y);
{
struct producex a
struct producex b

(struct producex)x;
(struct producex)y;

Lecture 14: Generic Data Structures 11

16 return string_equal(a->color, b->color)
17 && string_equal(a->fruit, b->fruit);

18 }

Because the hash set implementation still treats the elem type as ab-
stract, as long as we only give the hashtable struct produce pointers that
have been cast to void*, we can be sure that only generic pointers that are
correctly tagged with struct producex* will ever get passed to the equiva-
lence function, meaning that whenever the method produce_equiv_allis
called by the hash set implementation, the precondition should always be
satisfied.

hset_t Hl1 = hset_new(10, &produce_equiv_color, &produce_hash_color);

struct producex redapple = alloc(struct produce);
redapple->color = "red";
redapple->fruit = "apple";

struct producex redberry = alloc(struct produce);
redberry->color = "red";
redberry->fruit = "berry";

hset_insert(Hl, (voidx)redapple);
assert(hset_lookup(H1l, (voidx)redberry));

With this new interface, it's now possible for one program to use hash
sets storing different types of elements without duplicating the hash set
implementation code. For example, the following code could be added to
the “produce” client.

0 struct prod_count {

2 string fruit;

» int count;

23 };

24

»s bool prod_count_equiv(void*x x, voidx y)

% //@requires x != NULL && \hastag(struct prod_countx*, x);
v //@requires y != NULL && \hastag(struct prod_countx, y);
2% {

29 return string_equal(((struct prod_countx)x)->fruit,

30 ((struct prod_countx)y)->fruit);

31}

32

33

34

35

36

37

38

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

Lecture 14: Generic Data Structures 12

int prod_count_hash(voidx* x)
//@requires x != NULL && \hastag(struct prod_countx, Xx);
{

return hash_string(((struct prod_countx) x)->fruit);

}

void* prod_count(string fruit, int count)
//@ensures \result != NULL;
//@ensures \hastag(struct prod_count*, \result);
{
struct prod_count*x x = alloc(struct prod_count);
x->fruit = fruit;
X->count count;
return (voidx)x;

}

int main() {

elem greenapple = produce("green", "apple");
elem redapple = produce("red", "apple");
elem redberry = produce("red", "berry");
elem blueberry = produce("blue", "berry");

elem apple_count = prod_count("apple", 2);
elem berry_count prod_count("berry", 2);

hset_t H1 = hset_new(10, &produce_equiv_all,
&produce_hash_all);
hset_t H3 = hset_new(10, &prod_count_equiv,

&prod_count_hash);

// some test code here
return 0;

}

Notice that even though produce() and prod_count() create different
structures, from the hash set’s point of view both produce things of type
elem, i.e.,, void+. The type of the hash set elements has been abstracted
away, as it should be, since the hash set implementation should work for
any element type as long as it’s a pointer type.

	Introduction
	Hash Set Review
	Function Pointers
	Methods For Hash Sets
	Generic Pointers: 'void*'
	Generic Hash Sets

